| 摘要: | 因其具有熱膨脹不匹配顯著減弱,可提高使用壽命;啟動速度提升,適合小型、分散式發電,以及材料選擇種類增加等優點,中溫質子傳導型的研究蓬勃發展。然而,操作溫度的降低會影響氧還原反應 (Oxygen reduction reaction, ORR)的速率。 本研究使用脈衝雷射沉積取代傳統的刷塗,製作出由奈米顆粒堆積且具有高孔隙率的Gd0.3Ca2.7Co3.82Cu0.18O9-δ (GCCCO)陰極。以刷塗方法製作的陰極受限於粉末顆粒,比表面積相對較大,有著較大的厚度,且平整度較差。以脈衝雷射沉積製作陰極,雷射能量瞬間使靶材局部溫度劇升,使材料汽化並電離,形成包含原子、離子、電子及小團簇的高溫高速羽流(plume),撞擊並沉積到基板表面。羽流中的粒子在基板上冷卻、成核並層層堆積,更小的晶粒構成的團簇有著較高的反應面積,降低了全電池量測中的極化阻抗,尤其在高頻的部分。 由脈衝雷射沉積陰極,並以700℃進行退火處理。製成的全電池在600℃的操作溫度下,峰值功率密度達937 mW/cm2,極化阻抗為0.102 Ω•cm2。比較兩種全電池的差異,證實了脈衝雷射沉積形成的陰極微結構能夠顯著提升全電池的性能。本實驗也比較了脈衝雷射退火、微波退火對電池性能的影響。 ;Because a sharply reduced thermal‑expansion mismatch extends service life, faster start‑up enables small‑scale and distributed power generation, and a wider palette of compatible materials becomes available, research on intermediate‑temperature proton‑conducting SOFCs has flourished. However, lowering the operating temperature inevitably slows the oxygen‑reduction reaction (ORR) at the cathode. In this study, pulsed laser deposition (PLD) replaced the conventional brush‑painting method to fabricate a highly porous Gd₀.₃Ca₂.₇Co₃.₈₂Cu₀.₁₈O₉₋δ (GCCCO) cathode built from nanoparticles. Brush‑painted cathodes are limited by powder particle size, giving lower specific surface area, greater thickness, and poorer flatness. During PLD, nanosecond laser pulses instantaneously heat the target, vaporizing and ionizing the material into a high‑temperature, high‑velocity plume of atoms, ions, electrons, and small clusters that strike the substrate. These species cool, nucleate, and stack layer by layer; clusters composed of finer grains provide a larger reactive surface, which lowers the cell’s polarization resistance—especially in the high‑frequency region of the impedance spectrum. After annealing the PLD cathode at 700 °C, the resulting single cell delivered a peak power density of 937 mW cm⁻² at 600 °C with a polarization resistance of 0.102 Ω cm². Comparing the two cell architectures confirms that the PLD‑derived cathode microstructure markedly boosts overall performance. The study also evaluates how pulsed‑laser annealing (PLA) and microwave annealing (MWA) affect cell performance. |