我們在此透過分析球形時空中電磁波的格林函數來研究其傳播。我們採用標量-向量分解法來解二維球面上的麥克斯韋方程組,並將其解只寫成標量格林函數。然後,我們給出了一種利用積分微分算子從熱核計算相關格林函數的方法,該算子將不同維度球面的熱核關聯起來,這樣所有熱核都可以由一維球面熱核產生。我們將此方法應用於二維和三維球面,並獲得了有質量和無質量格林函數的結果。最後,我們注意到當質量降至某個值以下時出現的一個微妙現象,並討論了其含義和潛在的解決方案。;We here study the propagation of electromagnetic waves in spherical spacetimes by analyzing their Green’s functions. We employ a scalar-vector decomposition to solve Maxwell’s equations on the 2-sphere and write their solutions solely in terms of scalar Green’s functions. We then outline a method for calculating the relevant Green’s functions from their heat kernels using an integral-differential operator which relates the heat kernels of different dimensional spheres, so that all of them may be generated from the 1-sphere heat kernel. We apply this method to the 2 and 3-spheres and obtain results for both the massive and massless Green’s functions. Finally, we note a subtlety that arises when the mass drops below a certain value and discuss its implications and potential resolutions.