English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 58363606      線上人數 : 7700
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97770


    題名: 單光子放射顯微鏡不同針孔數之多工效應與影像重建分析;Analysis of Multiplexing Effects and Image Reconstruction with Different Pinhole Numbers in Single Photon Emission Microscope
    作者: 薛朝翰;Hsueh, Chao-Han
    貢獻者: 光電科學與工程學系
    關鍵詞: 單光子放射顯微鏡系統;取樣完整性;傅立葉串擾矩陣;影像重建;Single Photon Emission Microscope;Sampling Completeness;Fourier Crosstalk Matrix;Image Reconstruction
    日期: 2025-08-12
    上傳時間: 2025-10-17 11:53:17 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究採用單光子放射顯微鏡系統(Single Photon Emission Microscope, SPEM)作為投影影像擷取裝置。單光子放射顯微鏡系統為單光子放射電腦斷層掃描系統(Single Photon Emission Computed Tomography, SPECT)的一種高空間解析度應用分支,通用於小動物的影像研究。其影像擷取設備包含電子增益電荷耦合元件(Electron Multiplying Charge-Coupled Device, EMCCD)、高質量光影像縮倍管、摻鉈碘化銫晶體[CsI(Tl)]及多針孔式準直儀。
    在電腦斷層掃描系統中,為達到高品質的重建影像,必須建立具有高解析度與精確度的影像系統矩陣。該矩陣將三維物空間中每一體素點透過成像系統計算出在偵測器上之投影點。矩陣內含有每一格點各針孔不同角度之參數,雖然持續增加針孔數能夠提高系統靈敏度,但也不是不斷地增加針孔就能夠優化系統,過多的針孔容易引起多工效應的問題,進而導致解析度的降低,本研究將探討在不同針孔數的影像系統矩陣在影像重建中多工效應的影響。
    研究以各種參數分析針孔數對影像品質之影響,首先採用取樣完整性(Sampling Completeness)係數,評估螺旋軌道取樣對於重建物體大小的限制,以及在已建立的不同針孔數影像系統矩陣的假體取樣情形,比較圓形軌道取樣和雙螺旋軌道取樣的差異,藉此提升取樣完整性,進而改善重建影像的品質。此外,由於取樣軌跡不同會影響頻域響應分佈,可能導致空間解析度變化與產生混疊效應(Aliasing),因此本研究進一步使用Fourier Crosstalk Matrix分析影像系統的頻域行為。透過計算點響應函數(Point Response Function, PRF)與調制傳遞函數(Modulation Transfer Function, MTF),以取得影像系統矩陣的混疊和空間解析度。
    最後,透過假體影像重建實驗,分析各針孔數與軌跡之重建差異。重建過程中皆採用序列子集期望值最大化演算法(Ordered Subset Expectation Maximization, OSEM)作為重建的迭代演算法,使用解析度假體與Defrise假體作為模擬與評估之物體。最終,將單、四和七針孔系統在不同軌跡設計下的重建結果,分析在不同多工比例系統的重建品質,作為SPEM系統優化之理論依據。
    ;In this study, a Single Photon Emission Microscope (SPEM) system
    was employed as the projection imaging acquisition device. SPEM is a
    high spatial resolution version of Single Photon Emission Computed
    Tomography (SPECT), commonly used in small animal imaging studies.
    The imaging system consists of an Electron Multiplying Charge-Coupled
    Device (EMCCD), a high-quality optical demagnifier, a thallium-doped
    cesium iodide [CsI(Tl)] scintillator, and a multi-pinhole collimator.
    In computed tomography systems, achieving high-quality
    reconstructed images requires the construction of an image system matrix
    with high resolution and accuracy. This matrix maps each voxel in the 3D
    object space to its corresponding projection image on the detector through
    the imaging system. It incorporates parameters from various pinhole angles
    at each grid point. While increasing the number of pinholes can enhance
    system sensitivity, doing so indiscriminately does not necessarily optimize
    performance. An excessive number of pinholes may introduce
    multiplexing effects, which can degrade spatial resolution. This study
    investigates how the number of pinholes in the system matrix influences
    multiplexing effects during image reconstruction.
    To evaluate the impact of different pinhole numbers on image quality,
    the Sampling Completeness Coefficient (SCC) is first used to assess the
    limitations of helical sampling trajectories on object size. The sampling
    conditions of phantoms using system matrices with different pinhole
    configurations are analyzed, comparing circular and double-helical
    trajectories to improve sampling completeness and ultimately enhance
    image quality. Furthermore, since sampling trajectories affect the spatial

    frequency response—potentially altering spatial resolution and inducing
    aliasing—the study employs the Fourier Crosstalk Matrix (FCM) to
    analyze the frequency-domain behavior of the imaging system. By
    calculating the Point Response Function (PRF) and the Modulation
    Transfer Function (MTF), both aliasing and spatial resolution
    characteristics of the image system matrix can be determined.
    Finally, phantom reconstruction experiments are conducted to analyze
    the reconstruction performance under different pinhole configurations and
    sampling trajectories. The Ordered Subset Expectation Maximization
    (OSEM) algorithm is used throughout the reconstruction process.
    Resolution and Defrise phantoms are used for simulation and evaluation.
    Finally, the reconstructed results of single-, four-, and seven-pinhole
    systems under different trajectory designs are analyzed to evaluate image
    quality across varying degrees of multiplexing, serving as a theoretical
    basis for optimizing the SPEM system.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML9檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明