中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97856
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59565241      線上人數 : 838
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97856


    題名: 薄膜鈮酸鋰電光調制器的設計與製作研究;Study on the design and fabrication of thin film lithium niobate electro-optic modulators
    作者: 劉浩雲;LIU, HAU-YUN
    貢獻者: 光電科學與工程學系
    關鍵詞: 薄膜型鈮酸鋰;電光調製器;多模干涉器;Lithium Niobate On Insulator;EO modulator;MMI
    日期: 2025-08-25
    上傳時間: 2025-10-17 12:00:35 (UTC+8)
    出版者: 國立中央大學
    摘要: 薄膜型鈮酸鋰自從問世以來,各國逐漸將目光聚焦於此種擁有優良光學特性的新型材料,並對其積極投入研究開發。本論文將會模擬、製作,並量測在薄膜型鈮酸鋰上的電光調製器。
    首先會先簡單介紹該材料在光學性質上的優點,比較傳統的鈮酸鋰基板與薄膜型鈮酸鋰的差異;接著,會介紹光學波導的運作原理,並由此延伸到麥克森干涉儀、多模干涉器的運作原理,以及最重要的電極;模擬方面,模擬波導結構寬度,多模干涉器的寬度、長度,使光能量能在最適當的位置分裂成多模完成分光;S-bend的模擬設計也決定了在分光以及之後光能量能否有效被束縛住,不會有過多的能量損耗。電極的設計決定了調制頻率的高低,有多種因素需要被一一考慮。
    製程方面,我們使用新竹TSRI的TRACK和i-line stepper將光罩上的圖案透過黃光微影製程轉印到晶片表面;也會到台大的卓越大樓無塵室使用E-gun、PECVD、ICP-RIE等半導體製程機台來達到在薄膜型鈮酸鋰蝕刻的目的;電極部分,我們採取電鍍的方式,使之達到我們理想的厚度(~2μm)。
    本實驗在薄膜型鈮酸鋰上蝕刻出3μm~1μm總共五種寬度的波導,以及線寬為1.6μm的麥克森干涉儀。在實驗室量測架構上量測3μm、2.5μm、2μm三種寬度的波導,在TE偏振下,直波導分別量到3.36dB/cm、5.32dB/cm、10.57dB/cm;在TM偏振下,直波導分別量到7.9763dB/cm、11.5651dB/cm、14.18dB/cm。
    藉由調控晶片溫度可以控制晶體折射率,我們量測到MZI結構在不同的溫度下,輸出光的功率會跟著變動,代表我們MMI結構運作正常。電極響應部分,我們委託工研院電光所矽光子積體光電系統量測實驗室使用高頻探針量測,測得33.359GHz的電響應頻寬。
    ;Since the advent of thin-film lithium niobate, many countries have gradually focused their attention on this new material with excellent optical properties, and actively invested in its research and development. This paper will simulate, fabricate, and measure the multi-mode interferometer on thin-film lithium niobate.
    First of all, we will briefly introduce the optical advantages of this material, comparing the differences between traditional lithium niobate substrates and thin-film lithium niobate. Next, we will explain the operating principles of optical waveguides, extending this to the operating principles of Michelson interferometers and multimode interferometers, and, most importantly, electrodes. Regarding simulation, we will simulate the width of the waveguide structure and the width and length of the multimode interferometer to ensure that light energy is split into multiple modes at the optimal location for beam splitting. The S-bend simulation design also determines whether light energy can be effectively confined during and after beam splitting, without excessive energy loss. Electrode design determines the modulation frequency, and multiple factors must be considered.
    As for manufacturing process, we transfer the patterns from the mask to the wafer surface through lithography process with the TRACK and the i-line stepper from TSRI in Hsinchu. To etch thin-film lithium niobate, we would also use the processing equipment such as E-gun, PECVD, and ICP-RIE in NEMS Research Center at NTU. For the electrode, to achieve ideal thickness (~2μm), we fabricate our electrodes by electroplating process.
    This experiment etched waveguides with five widths, ranging from 3μm to 1μm, onto thin-film lithium niobate, along with Michelson interferometers with linewidth of 1.6μm. Waveguides with widths of 3μm, 2.5μm, and 2μm were measured. Under TE polarization, our straight waveguides achieved 3.36dB/cm, 5.32dB/cm, and 10.57dB/cm, respectively; under TM polarization, our straight waveguides achieved 7.9763dB/cm, 11.5651dB/cm, and 14.18dB/cm, respectively.
    By tuning temperature, we can control the refractive index of the crystal. We found out that the output power of the MZI varies with temperature, indicating that the MMI structure is working functionally. The temperature variation is approximately T_π = 10.5°C. As for the electrode response, we commissioned the Silicon Photonic Integrated Circuit Optoelectronics System Measurement Laboratory at the Institute of Electro-Optics, Industrial Technology Research Institute (ITRI), to measure the electrical response using a high-frequency probe, which yielded a bandwidth of 33.359 GHz.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML22檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明