English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56338161      線上人數 : 2186
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97859


    題名: 以具金屬背襯之表面起伏金屬光柵作為近紅外光偵測器之研究;Investigation of Metal-Backed Surface-Relief Metallic Grating as a NIR Photodetector
    作者: 劉奕暄;Liu, I-Hsuan
    貢獻者: 光電科學與工程學系
    關鍵詞: 金屬光柵;光偵測器;光電導;脈衝響應;電漿共振;近紅外光;Metal grating;photodetector;photoconductance;pulse response;plasmonic resonance;near infrared
    日期: 2025-08-27
    上傳時間: 2025-10-17 12:00:55 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,隨著高速光通訊技術的蓬勃發展,對於近紅外波段(Near-Infrared, NIR)
    之高效光偵測器的需求日益殷切。在該波段中,目前已成熟的技術以InGaAs PIN 光電
    二極體與雪崩式光電二極體為主,雖然擁有良好的線性響應和高靈敏度,但其使用III–
    V 材料導致成本較高,製程複雜,且與CMOS 元件整合不易等問題日益顯著。
    在此背景下,負光導(negative photoconductance) 光偵測器因其製程簡單與材料成
    本低廉等優勢,成為近年新穎的研究方向。本研究以光導特性改變之金屬奈米表面浮雕
    光柵(surface relief) 行近紅外光偵測器為基礎,以光通訊波段(1303.5 - 1310 nm) 為目標,設計並製作一具備高吸收率與負光導特性之金屬奈米表面浮雕光柵型近紅外光偵測
    器,並導入表面電漿共振(surface plasmon resonance)效應與Fabry–Pérot 共振於結構設計中,進一步增強場強,提升效率。最終經由Lumerical FDTD 模擬軟體中的粒子群
    聚演算法(particle swarm optimization, PSO)進行數值模擬與參數優化,得到於TM
    偏振光入射下,在波長為1308 nm 與1315.5 nm 處達到60.14% 與60.37% 的銀條內部
    吸收率。
    脈衝響應的部分,以Lumerical FDTD 對金屬光柵內部具有意義的點上對單一以及
    連續三脈衝輸入之訊號進行分析,以證明具底層銀之銀光柵最佳化設計之元件對於高速
    光通訊的訊號偵測能力,結果顯示其偵測極限約在2 Tbps 附近,足以充分應付目前高
    速光通訊之需求並且對之後的發展展現巨大的潛力。
    實際製作出具底層銀之銀光柵最佳化設計之元件S1106D4 並以顯微鏡反射式反
    射率量測系統搭配放大倍率10 倍、NA 值為0.3 之物鏡進行量測,於1269 nm 測得
    TM 偏振光12.76% 的反射率最低值,而TE 偏振光的反射率為90.21%,顯示了良好
    的偏振選擇性。最後於波長1269 nm、光功率0.53934 mW、偏壓6.77 mV 操作條件下進行元件之電性量測,量得光響應度為4.39649 mA W−1,外部量子效率(EQE)
    為0.42955%,NEP (noise equivalent power)為5.059446 × 10-9 W/√(Hz),偵測率D∗ (specific detectivity) 為7.654956 × 10^6 Jones。另一方面,元件響應特性呈現出強烈的光功率反比效應,且在不同偏壓下呈現正/負光導雙重行為。我們以COMSOL
    Multiphysics 模擬具底層銀之銀光柵最佳化設計之元件,以模擬數據對金屬光柵內部電
    場分量以及相位進行分析並對實際量測展現出的正負光導轉換行為進行初步的解釋。
    整體而言,本研究對最佳化設計元件進行了完整的數值模擬與實驗量測,雖然實際
    製程的元件最終外部量子效率表現並不理想,但量測結果展現的穩定且可重現性已驗證
    其作為高速、低功耗光偵測平台之潛力。
    ;In recent years, with the rapid development of high-speed optical communication
    technology, the demand for highly efficient photodetectors operating in the near-infrared
    (NIR) regime has become increasingly urgent. In this spectral range, the most mature
    technologies are based on InGaAs PIN photodiodes and avalanche photodiodes, which
    exhibit excellent linear response and high sensitivity. However, their reliance on III–V
    materials results in high fabrication costs, complex processes, and poor compatibility with
    CMOS integration, issues that are becoming progressively more prominent.
    Against this backdrop, negative photoconductance (NPC) photodetectors have emerged
    as a novel research direction in recent years, owing to their advantages of simple fabrication
    and low material cost. In this study, a near-infrared photodetector based on a metallic
    nanoscale surface-relief grating with tunable photoconductive properties was designed and
    fabricated, targeting the optical communication band (1303.5–1310 nm). The device was
    engineered to exhibit both high absorption efficiency and negative photoconductance, with
    its structural design incorporating surface plasmon resonance (SPR) and Fabry–Pérot resonance
    to further enhance local field intensity and improve performance. Finally, numerical
    simulations and parameter optimization were carried out using the particle swarm optimization
    (PSO) algorithm implemented in Lumerical FDTD Solutions, achieving internal
    absorption rates of 60.14% and 60.37% within the metallic grating at wavelengths of 1308
    nm and 1315.5 nm, respectively, under TM-polarized light incidence.
    For the temporal response analysis, Lumerical FDTD simulations were performed at representative points within the metallic grating under both single-pulse and three-pulse sequences. The results demonstrated that the optimized silver-backed metallic grating
    is capable of detecting optical signals up to a theoretical limit of approximately 2 Tbps,
    fully meeting the demands of current high-speed optical communication and showing great
    potential for future developments.
    Experimentally, the optimized silver-backed grating device (denoted as S1106D4)
    was fabricated and characterized using a microscope-based reflection measurement system
    equipped with a 10× objective lens (NA = 0.3). The minimum reflectance for
    TM-polarized light was measured to be 12.76% at 1269 nm, while the reflectance under
    TE polarization was as high as 90.21%, indicating excellent polarization selectivity.
    Furthermore, under operating conditions of 1269 nm incident wavelength, optical
    power of 0.53934 mW, and applied bias of 6.77 mV, the device exhibited a responsivity of
    4.39649 mA W−1, an external quantum efficiency (EQE) of 0.42955%, a noise equivalent
    power (NEP) of 5.059446 × 10−9 W/√Hz, and a specific detectivity D∗ of 7.654956 × 10^6
    Jones. In addition, the device displayed a pronounced inverse dependence on incident
    optical power and demonstrated a dual behavior of positive and negative photoconductance
    under different applied biases. COMSOL Multiphysics simulations of the optimized
    silver-backed grating were further performed to analyze the internal electric field distribution
    and phase response, providing preliminary insights into the experimentally observed
    positive-to-negative photoconductance transitions.
    Overall, this study has demonstrated a comprehensive design-to-experiment workflow
    for an optimized metallic grating photodetector. Although the final external quantum efficiency
    was not ideal, the stable and reproducible measurement results verify the potential
    of such a platform for high-speed, low-power optical detection applications.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML4檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明