English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 58210829      線上人數 : 6886
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97911


    題名: 空間域濾波器與最佳化分割演算法結合 定義黑潮範圍及綜合趨勢分析;Combination of Spatial Domain Filters and Optimized Segmentation Algorithm to Delineate Kuroshio Extent and Comprehensive Analysis of Trends
    作者: 蘇伯罕;Subhan, Mohammed Abdul Athick Abdul
    貢獻者: 國際研究生博士學位學程
    關鍵詞: 影像分割;黑潮;海流;逐像素趨勢;時空趨勢;時間序列分解;衛星遙感;海洋學參數;漂移資料;太空濾波器;資料分類;黑 潮偵測;Delineation;image segmentation;Kuroshio;ocean current;pixel-by-pixel trend;spatiotemporal trend;time series decomposition;spatial filters;data classification;Kuroshio detection;satellite remote sensing;oceanographic parameters;drifter data
    日期: 2025-07-16
    上傳時間: 2025-10-17 12:07:14 (UTC+8)
    出版者: 國立中央大學
    摘要: 大多數研究都是根據在標準網格位置或沿特定橫斷面測量的定量值來調查黑潮的。然而,本研究
    將黑潮與其周邊水域區分開來,並利用衛星資料分析了 1993 年至 2020 年從單一網格到流域規模
    的表面流趨勢。這種獨特的方法結合了分割和影像處理。當方差擬合優度大於 0.8 時,它比傳統
    的閾值/直方圖技術更能有效地描繪出不均勻的黑潮範圍,對海洋學和氣候研究有所貢獻。
    從劃定的黑潮來看,整體的流速呈現減弱的趨勢。為了分析其變化趨勢是均勻的還是隨區域變化
    的,本研究根據水文特徵將已劃定的黑潮劃分為 5 個區域。使用三種統計方法、兩種頻率方法和
    一種貝葉斯 (bayesian) 方法,以區域平均值和逐個像素為基礎分析其趨勢。值得注意的是呂宋島
    和台灣沿岸的風力減弱。相反,吐噶喇海峽 (Tokara Strait) 至名古屋及名古屋-150°E 方向的風力
    增強。有趣的是,黑潮南流-II 處存在著由減弱到加強的過渡區。在計算效率方面,檢測斷點和估
    計趨勢段(DBEST)和小波轉換(WT)優於其他方法。集合經驗模態分解 (EEMD) 和季節性趨
    勢 Loess (STL) 具有相似的效率水準。加性季節和趨勢斷點 (BFAST) 是為線性趨勢而設計的,而
    EEMD 適用於一般趨勢。突變、季節性變化和趨勢的貝葉斯估計器 (BEAST) 結合了多種模型以
    減少過度擬合,並從 GlobCurrent 和漂移數據中產生高度相關的趨勢。本研究探討結合空間濾波
    演算法擷取海面流的適用性。因此,對光柵濾波器進行了 80-13,505 張每日影像的測試,以檢測
    每週、季節和氣候尺度上的黑潮 (KC)。所選的柵格濾波器包括卷積、拉普拉斯、北梯度、銳化、
    最小/最大、直方圖均衡化、標準差和自然斷點。此外,還採用了海面流、海面溫度(SST)、海
    面高度(SSH)等常規資料集,以及總熱通量、表面密度(SSD)和鹽度(SSS)等非常規資料。
    此外,由於很少有研究表明葉綠素-ff 可以作為夏季 SST 的替代物來提取 KC,因此納入了有爭議
    的水色數據。有趣的是,只有結合演算法,過濾器的性能才是統一的,並且在季節和氣候尺度上
    都能蓬勃發展. 與使用單獨的濾鏡和指定值譜來識別黑潮特徵的典型場景相反,本研究採用了不
    同的方法。它研究了根據 SST、SSH、總熱通量、SSS、SSD、葉綠素-ff 和海面流計算出的黑潮中
    心線之間的相關性。從台灣東北部經吐噶喇海峽到日本南部,黑潮中心線各段觀測到的熱通量、
    葉綠素-ff 和表層鹽度資料有偏差,這很有啟發性。這種相關性凸顯了各種海洋數據的相互聯繫,
    有助於更深入地了解黑潮系統。
    ;Most studies investigated Kuroshio on quantitative values measured at standard grid locations or
    along a transect. However, this research delineates Kuroshio from its surrounding waters, and
    surface current trends are analyzed from 1993 to 2020, extending from a single location to a basin
    scale. This unique approach combines segmentation and image processing. When integrated with
    the goodness of variance fit greater than 0.8, it proves more efficacious than conventional threshold/
    histogram techniques in delineating patchy Kuroshio extent contributing to oceanography and
    climate studies.
    The generalized trend from delineated Kuroshio exhibited a systemwide weakening. To analyze
    whether the trend is uniform or varies with Latitude, delineated Kuroshio is divided into five
    sections based on the hydrological characteristics. The trend was analyzed using three statistical,
    two frequency, and one Bayesian approach on a regional mean and a pixel-by-pixel basis. Weakening
    in Luzon and along Taiwan is worth noting.
    In contrast, a strengthening in the Tokara Strait to Nagoya and Nagoya-150°E. Interestingly, the
    transition zone from weakening to strengthening in the Kuroshio South-II. Regarding computational efficiency, Detecting Breakpoints and Estimating Segments in Trend (DBEST) and Wavelet
    Transform (WT) outperformed the other methods. Ensemble Empirical Mode Decomposition
    (EEMD) and Seasonal Trend Loess (STL) have similar levels of efficiency. Breaks for Additive
    Season and Trend (BFAST) is designed for a linear trend, while EEMD is suitable for a general
    trend. The Bayesian Estimator of Abrupt, Seasonal Change and Trend (BEAST) combines multiple models to reduce overfitting and produces highly correlated trends from GlobCurrent and
    drifter data.
    This research also investigates the applicability of combining spatial filter's algorithm to extract
    surface ocean current. Accordingly, the raster filters were tested on 80–13,505 daily images to
    detect Kuroshio Current (KC) on weekly, seasonal, and climatological scales. The selected raster
    filters are convolution, Laplacian, north gradient, sharpening, min/max, histogram equalization,
    standard deviation, and natural break. In addition, conventional data sets of sea surface currents,
    sea surface temperature (SST), sea surface height (SSH), and non-conventional data such as total
    heat flux, surface density (SSD), and salinity (SSS) were employed. Moreover, controversial data on ocean color are included because very few studies revealed that chlorophyll-α is a proxy for
    SST in the summer to extract KC. Interestingly, the performance of filters is uniform and thriving
    for seasonal and on a climatological scale only by combining the algorithms.
    Contrary to the typical scenario of identifying Kuroshio signatures using an individual filter and
    by designating a value spectrum, this research takes a different approach. It investigates the correlation between Kuroshio's centerlines computed from SST, SSH, total heat flux, SSS, SSD,
    chlorophyll-α, and sea surface currents. The deviations observed in the various segments of
    Kuroshio's centerline extracted from heat flux, chlorophyll-α, and SSS flowing across Tokara
    Strait from northeast Taiwan to south Japan are enlightening. This correlation highlights the interconnectedness of various oceanographic data, providing a deeper understanding of the Kuroshio
    system.
    顯示於類別:[地球系統科學國際研究生博士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML10檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明