English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56292275      線上人數 : 1365
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97966


    題名: Efficient Bayesian Inference for Spatial Extreme Rainfall Modeling: A PoT-GEV Hierarchical Approach
    作者: 李威;Lee, Wei
    貢獻者: 統計研究所
    關鍵詞: 貝氏階層模型;區塊最大序列數據;廣義極值分佈;潛在空間高斯過程;拉普拉斯近似;Bayesian hierarchical modeling;Block maximum series data;Generalized extreme value distribution;Latent spatial Gaussian process;Laplace approximation
    日期: 2025-06-18
    上傳時間: 2025-10-17 12:12:56 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究提出一套適用於極端降雨事件分析的空間貝氏階層統計模型,擴充了由Olafsdottir等人(2021)所提出的峰值超過閾值廣義極值分布(PoT-GEV)架構,以納入不同地點之間的空間相依性。模型中,極端事件發生的頻率、強度與尾部行為等參數皆被視為受潛在高斯過程控制的空間隨機效應,以有效反映各地降雨極端程度的差異。為了解決高維空間推論所帶來的計算負擔,本研究採用一種高效率的二階段貝氏推論方法。具體而言,先使用拉普拉斯近似來逼近隨機效應的後驗分布,再透過Metropolis-Hastings演算法於MCMC框架下對超參數進行抽樣。在模擬研究中,我們進一步探討閾值選擇對模型估計準確度與穩定性的影響。最後,本方法應用於臺灣地區的逐日格點降雨資料,聚焦分析颱風季節的極端降雨事件。結果顯示,本模型不僅能有效捕捉空間上的極端行為差異,也能嚴謹評估其不確定性,顯示其於環境風險評估與空間極端值分析中的應用潛力。;This study proposes a spatial Bayesian hierarchical modeling framework for analyzing extreme precipitation, extending the peaks-over-threshold generalized extreme value (PoT-GEV) model to account for spatial dependence across locations. The model treats the frequency, scale, and shape parameters of the PoT-GEV distribution as location-specific random effects governed by latent Gaussian processes, thereby capturing spatial heterogeneity in both the occurrence and intensity of extreme events. To address the computational challenges posed by high-dimensional spatial inference, we adopt a two-stage Bayesian estimation strategy. Specifically, the Laplace approximation is used to efficiently approximate the posterior distribution of random effects, while the hyperparameters are sampled using the Metropolis-Hastings algorithm within a Markov chain Monte Carlo (MCMC) framework. Through extensive simulation studies, we evaluate the impact of threshold selection on estimation accuracy and model robustness. The proposed approach is further applied to gridded daily rainfall data across Taiwan, focusing on typhoon-season extremes. Results demonstrate the model’s ability to capture spatial variation in return levels and quantify associated uncertainty, underscoring its potential for reliable environmental risk assessment under a spatial extremes framework.
    顯示於類別:[統計研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML4檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明