中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97990
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83696/83696 (100%)
Visitors : 56350360      Online Users : 709
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/97990


    Title: 融合稀疏性與相關性的降維方法及其在 t-SNE 中的應用;A Dimensionality Reduction Method Integrating Sparsity and Correlation for t-SNE
    Authors: 陳威谷;Chen, Wei-Gu
    Contributors: 統計研究所
    Keywords: 高維度資料;拉普拉斯矩陣;t-隨機鄰近嵌入法;視覺化;High-dimensional data;Laplacian Matrix;t-SNE;Visualization
    Date: 2025-06-26
    Issue Date: 2025-10-17 12:14:03 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在高維資料盛行的時代,降維技術對於提升計算效率至關重要。其中,t-SNE
    因其能有效避免視覺化時的擁擠問題,而被廣泛應用。然而,傳統的 t-SNE 缺乏解
    釋能力,且對於大規模資料來說,計算成本相當高。本研究提出一種新的降維方
    法,將稀疏性與特徵之間的相關性結構整合進 t-SNE 的核心最佳化框架中。具體來
    說,我們透過最小化 Kullback-Leibler (KL) 散度,並加入兩個正則化項來建構降維
    矩陣 B:其中包含 ℓ1 懲罰項以鼓勵稀疏性,以及拉普拉斯懲罰項,用以捕捉基於
    精確矩陣所估計之特徵間的條件相依性。所建構出的 B 矩陣能保留關鍵資料結構
    並提供高品質的視覺化效果,並降低計算成本。本方法在具有獨立與相關結構的模
    擬資料集上進行驗證,並應用於實際的 MNIST 資料集中。結果顯示,該方法甚至
    在以少量樣本估計出轉換矩陣 B 的情況下,也能應用於大規模資料,展現出優異
    的穩健性。整體而言,將結構性正則化整合至 t-SNE 演算法中,不僅提升了整體的
    解釋性,亦滿足了降維矩陣 B 對於具有相似結構資料降維的重複使用性。
    ;In the era of high-dimensional data, dimensionality reduction techniques are essential
    for improving computational efficiency. Among these methods, t-SNE is widely used due
    to its ability to effectively alleviate the crowding problem in data visualization. However,
    traditional t-SNE lacks interpretability and incurs high computational costs when applied to
    large-scale datasets.This study proposes a novel dimensionality reduction method that in tegrates sparsity and feature correlation structures into the core optimization framework of
    t-SNE. Specifically, we construct a transformation matrix B by minimizing the Kullback Leibler (KL) divergence with two regularization terms: an ℓ1 penalty to promote sparsity,
    and a Laplacian penalty to capture conditional dependencies among features, estimated
    via the precision matrix.The resulting matrix B preserves essential data structures and en ables high-quality visualizations, while also reducing computational burden. The proposed
    method is evaluated on simulated datasets with both independent and correlated structures,
    as well as on the real-world MNIST dataset. Results demonstrate that even when the trans formation matrix B is estimated from a small number of samples, the method can still be
    effectively applied to large-scale data, exhibiting strong robustness. Overall, incorporating
    structured regularization into the t-SNE algorithm enhances interpretability and supports
    the reuse of the transformation matrix B for dimensionality reduction on structurally simi lar datasets.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML3View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明