中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97998
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83696/83696 (100%)
Visitors : 56330000      Online Users : 2139
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/97998


    Title: 基於差分隱私應用於聯邦對比式主成分分析;Differentially Private Federated Contrastive Principal Component Analysis
    Authors: 陳宥任;Chen, Yu-Jen
    Contributors: 統計研究所
    Keywords: 對比式主成份分析;差分隱私;聯邦學習;可視化;Contrastive principal component analysis;differential privacy;federated learning;visualizing
    Date: 2025-07-01
    Issue Date: 2025-10-17 12:14:32 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著資料分析應用的普及,如何在保障隱私的前提下整合來自多個機構的資料,已成為一項重要課題。為此,聯邦學習(Federated Learning)應運而生,提供一種分散式協作架構,使資料在本地進行運算,僅傳送模型參數至中央伺服器以建構全域模型。另一方面,對比式主成分分析(ContrastivePrincipalComponent Analysis)為傳統主成分分析的延伸方法,透過比較目標資料與背景資料的變異方向,發掘目標資料中特有的低維結構。為因應資料分散於各機構以及隱私保護的雙重需求,本文提出差分隱私(Differential Privacy)結合聯邦對比式主成分分析的方法,在不共享原始資料的情況下,達成跨機構的協作式降維分析。方法上,採用子空間聚合策略,整合各機構所計算之局部對比式主成分分析結果,並透過高斯機制對本地對比共變異矩陣進行擾動,以滿足(ϵ,δ)-差分隱私保護需求。此外,針對對比參數α的選擇問題,設計一套基於 K-medoids 分群方法與輪廓係數的自動化α選取演算法。實驗結果顯示,本方法即便在隱私保護條件下,仍能於多種資料設定中達成清晰且具辨識性的視覺化效果,顯示其具良好之實用性。;With the widespread adoption of data analysis applications, integrating data from multiple institutions while preserving privacy has become a critical issue. To address this, federated learning (FL) has emerged as a distributed collaborative framework that allows data to be processed locally, with only model parameters transmitted to a central server to build a global model. Meanwhile, contrastive principal component analysis (cPCA) extends traditional PCA by comparing variations between a target dataset and a background dataset, enabling the discovery of low-dimensional structures unique to the target data. To meet the needs of distributed data and privacy protection, this study proposes a method that combines differential privacy
    (DP) with federated cPCA. Without sharing raw data, the proposed method enables collaborative dimensionality reduction across institutions. Specifically, we adopt a subspace aggregation strategy to integrate local cPCA results from each institution and apply the Gaussian mechanism to perturb the local contrastive covariance matrix, ensuring (ϵ,δ)-differential privacy. Furthermore, to address the selection of the contrastive parameter α, we design an automated α selection algorithm based on K-medoids clustering and Silhouette coefficient. Experimental results demonstrate that even under privacy constraints, the proposed method is capable of revealing well-separated structures, highlighting its practical effectiveness.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML3View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明