| 摘要: | 近年來,隨著生成式AI、繪圖處理器 (GPU) 、5G網通、高效能運算 (HPC) 及自駕車等高階應用晶片之需求大幅成長,先進封裝 (Advanced Packaging) 技術的重要性日益凸顯。為突破摩爾定律物理瓶頸,異質整合 (Heterogeneous Integration) 已成為維持系統效能與功能彈性的主要技術路徑,先進封裝扮演了不可或缺的核心角色,逐步成為半導體價值鏈中的關鍵樞紐。本論文採用產業經濟學中結構-行為-績效 (Structure-Conduct-Performance, S-C-P) 為分析架構,系統性探討全球先進封裝產業的基本條件、市場結構、廠商行為與經營績效,並以全球先進封裝龍頭台積電 (TSMC) 作為主要研究對象,進一步分析其技術布局與策略行為。研究方法結合文獻彙整、產業報告分析 (Yole Intelligence、Omdia、TechSearch、MIC等)、官方數據與市場動態觀察,建構出完整的封裝產業競爭樣貌與趨勢推估。 研究結果顯示,全球先進封裝市場自2020年起進入快速成長階段,2024年產值達378億美元,預計至2029年將達695億美元,年均複合成長率 (CAGR) 為10.6%。其中以2.5D封裝(如CoWoS)、3D IC(如SoIC、Foveros)與Fan-Out為主力技術平台,廣泛應用於AI伺服器、資料中心與先進運算晶片上,推升整體市場需求高度成長。 在市場結構方面,目前先進封裝屬於寡占市場,由台積電、日月光 (ASE) 、Amkor與Intel等少數廠商主導,產能與平台能力集中度極高。市場進入門檻包含高資本支出、關鍵設備、技術專利與人才,形成明顯進入障礙。廠商之間透過平台差異化(如台積電 3DFabric、ASE VIPack™、Intel Foveros)提升價值鏈黏著度,呈現高度產品垂直差異性。 在廠商行為方面,台積電推動晶圓製程與先進封裝整合策略,形成「前段製程+後段封裝」垂直整合的獨特優勢,並與NVIDIA、Apple、AMD等大客戶簽訂長期合約,建立深度合作。業者也藉由策略聯盟、併購與供應鏈擴張(台積電赴美設廠)強化全球部署提高競爭力。此外,隨著各國政府重視晶片主權,美國、日本與歐洲陸續推動先進封裝在地化計畫,進一步改變全球產業地緣布局。 在績效面向上,台積電與日月光等領導廠商於先進封裝領域持續創造高毛利與穩定的現金流,封裝平均單位售價 (ASP) 與晶片附加價值顯著提升。台積電之CoWoS月產能將自2024年底之3.5萬片提高至2025年7.5~8萬片,並預期於2028年突破15萬片,反映市場對先進封裝需求高度黏著。此外,先進封裝亦帶動社會層面的正面效益。台積電於高雄與竹南之新廠創造逾16,000個直接與間接就業機會,美國亞利桑那新建封裝廠則配合CHIPS法案預計創造超過40,000個營建與製造職缺,展現其地緣政治與社會發展的戰略角色。 綜合而言,先進封裝產業結合高技術、高資本、平台策略與政策導向特性,成為下世代半導體競爭核心。未來技術趨勢將持續朝向大面積、多層數、高密度、高散熱整合方向演進。本研究建議政府強化封裝聚落投資、企業深化平台差異化策略,並提升整體供應鏈韌性與國際影響力,以因應全球科技競爭與市場變遷。 ;In recent years, the surge in demand for advanced application chips—including generative AI, GPUs, 5G communications, high-performance computing (HPC), and autonomous vehicles—has significantly elevated the importance of advanced packaging. As Moore′s Law approaches physical limits, heterogeneous integration has emerged as a vital path to sustaining system performance and flexibility. Advanced packaging is now a critical node in the semiconductor value chain. This study adopts the Structure-Conduct-Performance (S-C-P) framework to systematically analyze the global advanced packaging industry in terms of fundamental conditions, market structure, firm behavior, and performance. TSMC is selected as the focal case to examine its technological positioning and strategic actions. Methodologically, the research integrates literature reviews, industrial reports (Yole Intelligence, Omdia, TechSearch, MIC), official data, and market observations to present a comprehensive view of the industry’s evolution and trends. Findings reveal that since 2020, the advanced packaging market has entered a high-growth phase, reaching US$37.8 billion in 2024 and projected to reach US$69.5 billion by 2029, with a CAGR of 10.6%. Key platforms—such as 2.5D (CoWoS), 3D ICs (SoIC, Foveros), and Fan-Out—are broadly applied in AI servers, data centers, and HPC systems, accelerating overall demand. The market is currently oligopolistic, with dominance by TSMC, ASE, Amkor, and Intel. High entry barriers include capital intensity, proprietary equipment, and specialized talent. Firms differentiate through platform strategies—e.g., TSMC’s 3DFabric®, ASE’s VIPack™, and Intel’s Foveros—which enhance customer integration and product complexity. On the conduct side, TSMC’s integration of front-end and back-end processes establishes a vertically integrated advantage. Long-term partnerships with key clients like NVIDIA, Apple, and AMD reinforce its market position. Companies also strengthen competitiveness through strategic alliances and global expansion (e.g., TSMC’s U.S. fabs). Meanwhile, governments in the U.S., Japan, and Europe are promoting advanced packaging localization, reshaping the global industrial landscape. In terms of performance, leading firms continue to generate high margins and stable cash flow. TSMC’s CoWoS capacity is projected to grow from 35,000 wafers/month in 2024 to over 150,000 by 2028, reflecting sustained demand. The sector also produces societal benefits: TSMC’s new fabs in Kaohsiung and Zhunan are expected to create over 16,000 jobs, while its Arizona facility—part of the U.S. CHIPS Act—may generate 40,000 construction and manufacturing positions. In conclusion, advanced packaging has become a core frontier in semiconductor competition, driven by high technology, capital intensity, platform ecosystems, and policy orientation. Future development will favor large-area, high-density, and thermally integrated architectures. This study recommends that governments enhance cluster investments, firms deepen platform strategies, and all stakeholders improve supply chain resilience and global competitiveness. |