中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98029
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 60749526      Online Users : 924
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98029


    Title: R-DNNTEE: Remote Attestation for DNN Models Deployed on Satellite TEEs;R-DNNTEE: 衛星安全環境之深度學習遠端驗證
    Authors: 陳以晢;Chen, I-Che
    Contributors: 軟體工程研究所
    Keywords: 遠端驗證;LEO衛星;可信執行環境;ARM TrustZone;深度學習模型;Remote Attestaion;LEO Satellite;Trusted Execution Environment;ARM TrustZone;Deep Nerual Network Model
    Date: 2025-08-04
    Issue Date: 2025-10-17 12:16:09 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著即時衛星影像分析需求的快速成長,將人工智慧(AI)功能直
    接整合至低地球軌道(LEO)衛星平台,已成為重要的技術發展方向。
    傳統衛星運作流程需將影像資料下傳至地面站進行分析,不僅產生延
    遲,也增加通信成本,進而影響決策的時效性。為解決這些問題。本
    文提出一種安全且輕量的可信 AI 推論架構,專門設計於資源受限且無
    法實體接觸的 LEO 衛星環境中。並且整合了多項關鍵技術,包括利用
    以 OPTEE 為基礎的韌體 TPM(optee ftpm)建立信任根,並透過 TPM
    2.0 的平台組態註冊(PCR)測量機制與隨機數質詢協定進行遠端驗證,
    以確保平台完整性與可信度。模型的安全傳輸則仰賴結合 TPM HMAC
    的 AES 加密技術,防止在傳輸過程中遭到竄改或竊取。此外,推論過
    程採用分區式設計,將敏感的模型層保護於可信執行環境(TEE)中,
    而將其餘運算卸載至具備 GPU 加速能力的非安全區域(REE)執行,
    兼顧性能與安全。實驗結果顯示,該系統可在合理時間內完成完整性
    報告生成與模型驗證,同時透過 GPU 加速將推論延遲最高改善至 2.36
    倍。在確保資料隱私與系統可信性的前提下,本文所提出的混合式架
    構成功實現了 AI 模型從傳輸到執行的全程保護與可驗證性,為未來具
    即時決策能力的衛星星座奠定了實用基礎。;With the growing demand for real-time satellite image analytics, inte-
    grating artificial intelligence (AI) capabilities directly into Low Earth Or-
    bit (LEO) platforms has become a critical technological frontier. Traditional
    satellite workflows rely on downlinking imagery to ground stations for analy-
    sis, incurring latency and communication overhead that hinder timely decision-
    making. This paper presents a secure and lightweight architecture for trusted
    AI inference on LEO satellites, addressing the unique constraints of resource-
    limited and physically inaccessible environments.
    Our system combines multiple core technologies: firmware TPM for es-
    tablishing a root of trust, Remote Attestation using TPM 2.0 PCR measure-
    ments and nonce-challenge protocols, AES encryption with TPM-HMAC
    for secure model delivery, and a partitioned inference framework leverag-
    ing GPU-accelerated REE execution and TEE-based protection for sensitive
    model layers. This hybrid architecture achieves end-to-end model protection
    and verifiable execution, laying a practical foundation for secure, real-time
    AI in future satellite constellations.
    Appears in Collections:[Software Engineer] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML53View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明