中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98031
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83696/83696 (100%)
造访人次 : 56165130      在线人数 : 1344
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98031


    题名: 廣義有限失效母體模型下結合資料增補的貝氏推論;Bayesian Inference Incorporating Data Augmentation under Generalized Limited Failure Population Models
    作者: 黃鉦文;HUANG, CHENG-WEN
    贡献者: 統計研究所
    关键词: 廣義有限失效母體;資料增補;不完整概似函數;共軛先驗分布;GLFP models;incomplete likelihood;data augmentaion;conjugate prior distribution
    日期: 2025-07-29
    上传时间: 2025-10-17 12:16:20 (UTC+8)
    出版者: 國立中央大學
    摘要: 在如 IC 產品的一些電子零件中,由於製程或其他因素產生瑕疵,導致產品前期早衰(infant mortality)失效,而非瑕疵品則最終會因磨耗(wear-out)而失效。廣義有限失效母體(Generalized Limited Failure Population,GLFP)模型,可用於分析同時受因製程產生的瑕疵導致產品前期早衰,與後期終因長期磨損失效的產品或電子零件之失效時間數據。另一方面,自 E-M 演算法後,資料增補 (data augmentaion) 在統計學中的應用極為廣泛。本研究於對數常態分布 GLFP 模型,以貝氏方法結合資料增補建構完整概似函數,在各參數具共軛先驗分布下,以吉布斯抽樣(Gibbs sampling)加速馬可夫鍊蒙地卡羅(Markov chain Monte Carlo,MCMC)演算法的計算過程,從而提升計算效率。同時藉由資料增補的隱藏變數之後驗抽樣過程中,為每筆失效資料之失效模式和其是否為瑕疵品進行預測,並針對 Backblaze 公司所提供的硬碟資料,考慮不同的先驗資訊,進行壽命之可靠度相關分析。;Some electronic components such as integrated circuits contain latent defects introduced during manufacturing or other processes, causing a subset of units to fail prematurely (infant mortality), while non-defective units eventually fail due to wear-out. The generalized limited failure population (GLFP) model captures this dual behavior by jointly modeling early failures arising from manufacturing defects and later failures driven by long-term degradation. Based on the widely used data augmentation technique in statistics, this study develops a Bayesian GLFP framework with log-normal lifetime distributions. By augmenting the latent data, we construct the complete likelihood, assign conjugate priors to all parameters, and employ Gibbs sampling to accelerate Markov chain Monte Carlo (MCMC). The posterior draws of the latent augmentation variables simultaneously yield predictive classifications of each observed failure mode and defect status. Finally, using hard-drive failure data released by Backblaze, we perform reliability analysis under various prior assumptions to illustrate the practical utility of the proposed method.
    显示于类别:[統計研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML3检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明