中大學術數位典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98041
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83956/83956 (100%)
Visitors : 62653168      Online Users : 629
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98041


    Title: 運動在提升壓力韌性中的角色:基於虛擬實境足球情境下的生理與認知表現;The Role of Exercise in Enhancing Stress Resilience: Physiological and Cognitive Performance in VR-Simulated Soccer
    Authors: 蔡禎宸;Tsai, Chen-Chen
    Contributors: 軟體工程研究所
    Keywords: 虛擬實境;壓力;腦電波;心率變異度;眼動追蹤;VR;Stress;EEG;HRV;Eye-Tracking
    Date: 2025-08-09
    Issue Date: 2025-10-17 12:16:59 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在高壓運動情境中,有效的壓力調節對維持認知與生理表現至關重要。本研究探討習慣性運動是否能增強壓力韌性,透過虛擬實境(VR)足球模擬環境,觀察受試者的生理、神經與認知反應。60 名受試者依其運動習慣分為運動員組、規律運動組與一般組,並於不同壓力程度下執行休息、射門與守門任務。研究過程中同步記錄心率變異度(HRV)、腦電波(EEG)與眼動訊號。結果顯示,相較於缺乏運動者,規律運動者與運動員在壓力下展現更穩定的自律神經調節、注意力控制與任務表現,尤以額葉 theta 活性與 HRV 為主要差異指標。此外,機器學習模型亦能中等準確地辨識不同組別與任務的生理狀態,展現壓力自動化判讀的潛力。本研究強調運動對壓力管理的保護效果,並驗證 VR 在近真實情境中進行認知與生理評估的可行性。;Effective stress regulation is fundamental for maintaining cognitive and physiological performance in high-pressure sports scenarios. This study explores how habitual exercise influences stress resilience by examining physiological, neural, and cognitive responses in a virtual reality (VR)-based soccer environment. Sixty participants were classified into Athlete, Recreational, and General groups based on their exercise history. During rest, shooting, and goalkeeping tasks under varying stress levels, multimodal signals—including heart rate variability (HRV), electroencephalography (EEG), and eye-tracking—were continuously recorded. Results showed that individuals with regular physical training demonstrated better autonomic regulation, enhanced attentional control, and improved task performance under stress compared to non-exercisers. Frontal theta activity and HRV markers were especially effective in differentiating stress responses among groups. Machine learning classifiers further identified group- and task-specific patterns with moderate accuracy, suggesting the potential for automated stress profiling. These findings highlight the buffering effect of regular exercise on stress and demonstrate the utility of VR simulations for assessing cognitive performance in realistic yet controlled environments.
    Appears in Collections:[Software Engineer] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML68View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明