中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98049
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59253572      線上人數 : 1534
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98049


    題名: 於邊緣裝置之語音關鍵詞辨識設計與實作;Design and Implementation of a Keyword Spotting Model on Edge Devices
    作者: 蔡清揚;TSAI, Ching-Yang
    貢獻者: 通訊工程學系
    關鍵詞: 邊緣運算;物聯網;keyword spotting;TCP\IP;kernel module
    日期: 2025-06-20
    上傳時間: 2025-10-17 12:17:48 (UTC+8)
    出版者: 國立中央大學
    摘要: 在數據驅動的時代,邊緣運算和人工智慧的發展正重新塑造各行各業的運作模式。隨著物聯網設備的普及和數據生成量的激增,傳統的集中式雲計算架構面臨著巨大的挑戰,如高延遲、頻寬限制和數據安全問題。因此,將計算和數據處理推向網路邊緣,以實現即時響應和高效處理,成為了一種重要的技術趨勢。
    然而,邊緣運算中的挑戰在於資源限制——邊緣設備通常擁有較低的計算能力和儲存空間。這就需要精簡化的AI模型來在這些有限的設備上高效運行。AI模型的精簡化又不失精確度,可以有效地減少模型的計算需求和存儲佔用,從而使得即使在邊緣設備上也能實現高效的數據處理和即時響應。本文探討了在關鍵字檢測中如何實現AI模型的輕量化,同時保證其精確度,以適應邊緣設備的需求。
    ;In the data-driven era, the development of edge computing and artificial intelligence is reshaping the operational models across various industries. With the proliferation of IoT devices and the surge in data generation, traditional centralized cloud computing architectures are facing significant challenges, such as high latency, bandwidth limitations, and data security concerns. As a result, shifting computation and data processing toward the network edge to achieve real-time responsiveness and efficient processing has become an important technological trend.
    However, edge computing presents challenges due to resource constraints—edge devices typically possess limited computing power and storage capacity. This necessitates the use of streamlined AI models that can run efficiently on these constrained devices. The simplification of AI models, without compromising accuracy, can effectively reduce computational demands and storage usage, thereby enabling efficient data processing and real-time response even on edge devices. This paper explores how to achieve model lightweighting for keyword spotting while maintaining accuracy, in order to meet the needs of edge devices.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML8檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明