中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98069
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59297809      Online Users : 1156
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98069


    Title: 模型驅動之混合深度強化學習於聯合運算與 通訊於多功能 RIS 輔助之星空地整合網路;Twin Model-Driven Hybrid Deep Reinforcement Learning for Joint Computing and Communications in Multi-Functional RIS-Aided Space-Air-Ground Integrated Networks
    Authors: 黃雋喆;Jyun-Jhe Huang
    Contributors: 通訊工程學系
    Keywords: 多功能重構智慧表面;星空地一體化網路;資源管理;能源效率;深度 強化學習;Multi-functional reconfigurable intelligent surface;space-air-ground inte grated Network;Resource Management;Energy efficiency;Deep Reinforcement Learning
    Date: 2025-06-30
    Issue Date: 2025-10-17 12:19:19 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在本研究中,我們提出一種創新的網路架構,將多功能可重構智慧
    表面(MF-RIS)部署於星空地網路(SAGIN)中。與僅具備訊號反射能力的
    傳統 RIS 不同,MF-RIS 能夠反射、折射、放大訊號,並從無線訊號中收集能
    量。此架構旨在解決低地球軌道(LEO)衛星在陰影區域無法獲得太陽能時的
    高能耗問題,同時考慮 SAGIN 節點在計算和通訊過程中的能量消耗。透過在
    每個 SAGIN 節點部署 MF-RIS,可增強通道多樣性、訊號強度,並提升整體能
    源效率(EE)。 為了實現上述目標,我們將長期能源效率最大化問題建模為
    一個最佳化問題,決定最佳的 MF-RIS 配置,包括放大和相位偏移參數、能量
    收集比例以及主動元件的數量,同時優化 LEO、高空平台(HAPS)和基地台
    (BS)節點的參數,如傳輸波束成形、HAPS 部署、連線和 CPU 運算能力。 為
    了解決該問題高維度的離散與連續優化變數,以及其複雜的非凸和非線性特
    性,我們設計了一種雙模型增強的多代理混合深度壓縮強化學習(Twin-Model
    Enhanced Multi-Agent Hybrid Deep Compressed Reinforcement Learning)方案。該
    方法結合了壓縮技術以降低計算複雜度,並採用專門設計的混合深度強化學習
    策略,使每個代理能夠在連續與離散決策空間中進行最優互動。 數值結果顯
    示,與其他基準方法(如集中式深度強化學習和分散式多代理深度確定性策
    略梯度(DDPG))相比,該方法在能源效率方面有顯著提升。此外,所提出的
    SAGIN-MF-RIS 架構在能源效率表現上優於固定/無能量收集的 MF-RIS、僅具
    反射功能的傳統 RIS,以及未部署 RIS/MF-RIS 的情境,證明了其有效性。;In this thesis, we propose a novel space-air-ground integrated network (SAGIN)
    architecture enhanced by a multi-functional reconfigurable intelligent surface (MF-RIS).
    MF-RIS supports signal reflection, refraction, amplification, and wireless energy har vesting. This design mitigates energy shortages for LEO satellites in shadowed regions
    and considers energy consumption from both communication and computation at each
    SAGIN node. We formulate a long-term EE maximization problem that jointly opti mizes MF-RIS parameters (amplification, phase shift, harvesting ratio, and active ele ments) and SAGIN configurations (beamforming, HAPS deployment, user association,
    and computing cycles). To tackle the mixed discrete-continuous, non-convex optimiza tion challenge, we propose a twin-model enhanced multi-agent hybrid deep compressed
    Reinforcement Learning framework. This framework leverages model compression and
    a hybrid RL strategy to efficiently explore large action spaces. Simulation results show
    our method outperforms centralized and multi-agent deep deterministic policy gradient
    (DDPG) baselines in EE and outperforms fixed or no energy harvesting MF-RIS, tradi tional RIS, and no-RIS setups.
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML17View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明