中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98134
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83696/83696 (100%)
Visitors : 56349510      Online Users : 674
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98134


    Title: A Boundary-Zone Guided Diffusion Model for Adversarial Training with Label Uncertainty in Mobile Networks
    Authors: 馬寧;Ma, Ning
    Contributors: 通訊工程學系
    Keywords: 生成式 AI;表格型去除雜訊擴散機率模型(TabDDPM);決策邊界;對抗訓練;標籤不確定性;Generative AI;tabular denoising diffusion probabilistic model (TabDDPM);decision boundary;adversarial training;label uncertainty
    Date: 2025-08-16
    Issue Date: 2025-10-17 12:23:54 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 下一代行動網路在關鍵任務上高度依賴機器學習,因此模型對於對抗性攻擊的穩健性至關重要。我們提出了 AdvTabDDPM,一個基於擴散模型的框架,用於混合型表格資料中生成邊界敏感的潛在對抗性樣本。透過定義動態邊界區域並在對抗訓練中引入標籤不確定性(label uncertainty),我們的方法能精確針對低信心區域,促使決策邊界更加平滑且可靠。實驗結果顯示,AdvTabDDPM 能將生成的樣本集中於決策邊界附近,並將整體準確率從 82.06% 提升至 92.57%,在所有評估方法中最接近未受擾動資料的準確率 93.87%,並優於 FGSM、PGD 與 CW。這些結果證明,結合邊界導向的樣本生成與標籤不確定性,能為網路機器學習模型提供有效的穩健性與準確性提升策略。;Next-generation mobile networks rely on machine learning for critical tasks, making model robustness against adversarial attacks essential. We propose AdvTabDDPM, a diffusion-based framework that generates boundary-sensitive potential adversarial examples in mixed-type tabular datasets. By defining a dynamic boundary zone and incorporating label uncertainty during adversarial training, our method precisely targets low-confidence regions, encouraging smoother and more reliable decision boundaries. Experiments show that AdvTabDDPM concentrates examples near decision boundaries and improves overall accuracy from 82.06% to 92.57%, the closest among evaluated methods to the clean data accuracy of 93.87%, outperforming FGSM, PGD, and CW. These results demonstrate that combining boundary-guided generation with label uncertainty provides an effective strategy for robust and accurate network ML models.
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML8View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明