中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98146
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 61106413      Online Users : 797
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98146


    Title: Dynamic Graph Models for Efficient Multi-User MR Remote Rendering
    Authors: 林柔伶;Lin, Jou-Ling
    Contributors: 通訊工程學系
    Keywords: Augmented Reality (AR);Virtual Reality (VR);Mixed Reality (MR);Remote Rendering;latency compensation;Data Optimization for Transmission;Graph Theory;擴增實境;虛擬實境;混合實境;遠端渲染;延遲補償;傳輸數據優化;圖論
    Date: 2025-08-18
    Issue Date: 2025-10-17 12:25:27 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 混合實境(Mixed Reality, MR)的遠端渲染需要在有限的網路資源下,有效分配頻寬以提供沉浸式體驗。本論文提出一個名為「串流圖論優化」(Graph-Theoretic Optimization for Streaming, GOS)的創新框架,旨在應對此項挑戰。GOS框架將傳統上各自獨立的可見性、分群與品質決策,整合成單一且整體的優化過程。此方法將MR環境模型化為一個動態圖形,其中邊的權重編碼了空間與動態的相互關係。GOS採用一種迭代式的協同優化迴圈,讓這些相互依存的決策能夠彼此提供資訊並相互完善。這種作法從根本上突破了靜態、序列式流程的限制,以有原則、數據驅動的機制取代了過往的特定啟發式演算法,從而無需手動調整參數。實驗評估證明,GOS的表現顯著優於基於啟發式演算法的方法,不僅能額外減少34%的頻寬消耗,同時還能將定位精準度提升56%。此框架在多樣化且動態的場景中皆展現出穩健的效能,證實其作為下一代MR系統高效能、可擴展解決方案的潛力。;Mixed Reality (MR) remote rendering demands efficient bandwidth allocation to deliver immersive experiences under constrained network resources. This paper proposes a novel Graph-Theoretic Optimization for Streaming (GOS) framework that addresses this challenge by unifying the traditionally separate decisions of visibility, clustering, and quality into a single, holistic optimization process. By modeling the MR environment as a dynamic graph where edge weights encode spatial and motion-based relationships, GOS employs an iterative co-optimization loop where these interdependent decisions mutually inform and refine one another. This approach fundamentally breaks from the limitations of static, sequential pipelines, replacing ad-hoc heuristics with principled, data-driven mechanisms that eliminate the need for manual parameter tuning. Experimental evaluations demonstrate that GOS significantly outperforms heuristic-based approaches, reducing bandwidth consumption by an additional 34% while simultaneously improving positioning accuracy by 56%. The framework achieves robust performance across diverse and dynamic scenarios, confirming its potential as an efficient and scalable solution for next-generation MR systems.
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML82View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明