中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98150
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 59205525      在线人数 : 720
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98150


    题名: 利用混頻資料與機器學習方法對台灣半導體產業獲利之即時預測;Panel Data Nowcasting : The Case of Profitability in Taiwan′s Semiconductor Industry
    作者: 劉景翔;Liu, Ching-Shiang
    贡献者: 經濟學系
    关键词: 機器學習;即時預測
    日期: 2025-06-30
    上传时间: 2025-10-17 12:26:04 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究旨在運用混頻面板資料(Mixed-frequency Panel Data)與結構化機器學
    習方法,探討台灣半導體產業每股盈餘(EPS)與毛利率(Gross Margin)之即時預
    測(Nowcasting)問題。隨著全球經濟與政治環境快速變化,半導體產業作為數位
    經濟核心,其財務表現對市場投資與政策制定具有高度影響力。然而,傳統財務預
    測方法多依賴低頻歷史財報資訊,難以及時反映當期經濟環境與產業動態,亟需具
    備即時性與高預測準確度之方法加以改進。
    本研究運用稀疏群組正則化技術,處理高維結構化的混頻資料,並納入台灣上
    市企業特有之月營收資料,結合宏觀經濟變數,包括利率、匯率、通膨率與工業生
    產指數等,建構可即時預測 EPS 與毛利率之模型。月營收資料作為台灣企業每月
    強制公告之高頻營運資訊,能有效補強傳統財務報表資訊之時效性不足,提升模型
    對企業營運動態之即時掌握能力。
    實證部分以台灣半導體產業為研究對象,評估不同變數組合對 EPS 與毛利率
    預測效果之影響,並與傳統 AR(1) 基準模型進行比較,檢驗所提模型之預測效能。
    研究結果顯示,納入月營收資料與總體經濟變數後,能顯著提升 EPS 與毛利率預
    測準確度,提供更具時效性與實務參考價值之預測資訊。整體成果除具學術創新意
    涵,亦可協助投資人、企業管理者及政策制定者在快速變動的市場環境中,做出更
    為前瞻且有效之決策。;This study applies mixed-frequency panel data and structured machine learning
    techniques to nowcast two key financial indicators—earnings per share (EPS) and gross
    margin—for Taiwan’s semiconductor industry. In an era of rapidly changing global
    economic and political environments, the financial performance of the semiconductor
    sector, a cornerstone of the digital economy, plays a critical role in shaping investment
    strategies and policy decisions. However, conventional forecasting methods relying on
    low-frequency historical financial reports often fail to capture real-time economic shifts
    and industry dynamics, highlighting the need for more timely and accurate predictive
    models.
    This research leverages sparse-group regularization techniques to handle high
    dimensional, structured mixed-frequency data. In particular, it incorporates the unique
    monthly revenue disclosures mandated for listed companies in Taiwan, combined with
    key macroeconomic variables such as interest rates, exchange rates, inflation rates, and
    industrial production indices, to construct models for real-time EPS and gross margin
    forecasting. Monthly revenue data, as high-frequency operational information, effectively
    enhances the model’s ability to track current business performance and respond to market
    changes in a timely manner.
    An empirical analysis is conducted on Taiwan’s semiconductor industry to evaluate the
    impact of different variable combinations on the predictive performance for EPS and
    gross margin. The proposed models are also benchmarked against traditional AR(1)
    models to assess forecasting accuracy. The results demonstrate that incorporating monthly
    revenue data and macroeconomic indicators significantly improves predictive accuracy,
    providing more timely and practical insights. The findings offer theoretical contributions
    to the academic literature and valuable guidance for investors, corporate managers, and
    policymakers in making forward-looking and effective decisions in a dynamic market
    environment.
    显示于类别:[經濟研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML17检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明