中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98161
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83696/83696 (100%)
造访人次 : 56975601      在线人数 : 5374
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98161


    题名: 通過生成式人工智慧藉由共同學習行為模式進行個性化干預提升自我調節學習與學習表現;Personalized Intervention by Generative AI over SRL and Performance through Common Learning Behaviors
    作者: 林建昌;LIN, CHIEN-CHANG
    贡献者: 資訊工程學系
    关键词: 生成式人工智慧;自我調節學習;學習行為分析;人工智慧在教育的應用;Generative AI;Self-Regulated Learning;Learning Behavior Analysis;AI in Education
    日期: 2025-05-21
    上传时间: 2025-10-17 12:26:56 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文提出了一種創新的方法,結合自然語言處理(NLP)、嵌入技術及生成式人工智慧(Generative AI)干預,旨在預測並提升線上教育中的學習表現。研究的第一階段專注於構建一個強大的學習表現預測模型,該模型整合了來自 BookRoll 和 Viscode 系統的數據。通過分析學習行為日誌並將其轉化為自然語言描述,使用 BERT 等嵌入技術和聚類演算法識別學習行為中的模式。這些洞見被結構化為學習行為,並作為深度學習模型的輸入,達到高達95%的預測準確率顯著超越傳統方法,能夠捕捉學生行為的時間性與語義特徵,並提供卓越的解釋性與擴展性。我們識別出一組共通學習行為(Common Learning Behaviors, CLB),這些行為與高表現高度相關,並可作為設計個人化介入策略的基準。研究的第二階段著重於在真實教育情境中實施個性化干預。以反思性思維及自我調節學習(Self-Regulated Learning, SRL)理論為基礎,生成式人工智慧(Generative AI)提供學習行為的個性化洞察,支持學生進行自我反思。透過指導性的反思問題及動態反饋機制,學生能夠採取適應性的學習策略,提升時間管理與自我評估的能力。實驗結果顯示,AI 輔助的干預顯著改善了學生與 CLBs 的行為一致性,縮短行為距離,並促進有意義的自我調節實踐。特別是,時間管理被證實是連結自我評估與學術表現的關鍵橋樑。本研究不僅推動了學習表現預測方法的進步,還展現了人工智慧驅動的個性化干預在促進深度學習體驗中的潛力。透過結合尖端技術與教育理論,本研究提供了一個轉型性框架,用於提升自我調節學習及學術成果。研究結果強調了適應性干預的重要性,為未來在個性化與可擴展教育系統中的探索鋪平了道路。;This dissertation introduces an innovative approach to predicting and enhancing learning performance in online education by leveraging Natural Language Processing (NLP), embedding techniques, and generative AI-based interventions. The first phase focuses on a robust performance prediction model that integrates data from BookRoll and Viscode systems. By analyzing behavioral logs and converting them into natural language descriptions, embeddings such as BERT and clustering algorithms identify patterns within learning behaviors. These insights are structured as learning behavior and serve as inputs for a deep learning model, achieving a prediction accuracy of up to 95%. We identify the Common Learning Behaviors (CLB) which can achieve high performance and can be the baseline for personalized intervention. This model outperforms traditional methods by capturing the temporal and semantic dimensions of student behaviors, offering unparalleled interpretability and scalability. The second phase of the study involves implementing personalized interventions in real educational scenarios. Grounded in reflective thinking and self-regulated learning (SRL) theories, generative AI (GenAI) supports self-reflection by providing tailored insights into learning behaviors. Through guided reflective prompts and dynamic feedback loops, students engage in adaptive learning strategies, enhancing their time management and self-evaluation capabilities. Experimental results demonstrate that AI-assisted interventions significantly improve alignment with CLBs, reduce behavior distances, and foster meaningful self-regulation practices. Notably, time management emerges as a critical bridge between self-evaluation and academic performance. This research not only advances the methodology of performance prediction but also highlights the potential of AI-driven personalization in fostering deeper learning experiences. By combining state-of-the-art technologies with educational theories, the study provides a transformative framework for enhancing self-regulated learning and academic outcomes. The findings underscore the significance of adaptive interventions, paving the way for future explorations in personalized and scalable education systems.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明