English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56356024      線上人數 : 909
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98164


    題名: 應用於強化大型語言模型輔助複雜系統設計之MIAT方法論知識圖譜建構;A Knowledge Graph Construction Framework Based on MIAT Methodology for Enhancing LLM-Assisted Complex System Design
    作者: 林育萱;Lin, Yu-Syuan
    貢獻者: 資訊工程學系在職專班
    關鍵詞: MIAT方法論;知識圖譜;大型語言模型;輔助系統設計;Vibe Coding;程式碼品質;複雜系統設計;MIAT Methodology;Knowledge Graph;Large Language Model (LLM);Assisted System Design;Vibe Coding;Code Quality;Complex System Design
    日期: 2025-06-16
    上傳時間: 2025-10-17 12:27:00 (UTC+8)
    出版者: 國立中央大學
    摘要: MIAT方法論為一套具備邏輯化、結構化的複雜系統設計流程,涵蓋以IDEF0拆解系統架構、使用Grafcet進行離散事件建模,最終透過高階合成產生程式碼,對於複雜系統設計具有明確且有效的指導作用。然而,大型語言模型(LLM)在應用MIAT方法論時易產生幻覺問題,且Vibe Coding風潮亦引發一系列程式碼生成品質疑慮。為此,本研究建置了以IDEF0階層概念設計的MIAT方法論知識圖譜(MIAT-KG),並導入Docling工具輔助建置過程。在知識理解能力測試中,導入知識圖譜後LLM於MIAT核心概念掌握的加權準確率由18%提升至93%;在系統設計輔助測試中,LLM能依循MIAT方法論的標準流程,逐步引導或啟發使用者完成系統架構拆解與離散事件建模,最終生成具備階層式、模組化結構的程式碼。且針對Vibe Coding與MIAT方法論生成之程式碼進行四種大型語言模型的評分比較,結果顯示MIAT方法論生成之程式碼在結構性與可維護性上均顯著優於Vibe Coding版本。MIAT方法論不僅確保程式的邏輯一致性與穩定性,也大幅提升後續系統擴充與維護的便利性。綜合實驗結果MIAT-KG能有效強化LLM於複雜系統設計中之輔助能力,提升程式生成之專業性與可控性,對於中大型系統開發具重要應用價值。;The MIAT methodology is a logical and structured design process for complex systems, encompassing system architecture decomposition using IDEF0, discrete event modeling through Grafcet, and final high-level synthesis to generate code, providing clear and effective guidance for complex system design. However, large language models (LLMs) often encounter hallucination issues when applying the MIAT methodology, and the Vibe Coding trend has also raised concerns regarding code generation quality. To address these challenges, this study constructed the MIAT Knowledge Graph (MIAT-KG) based on the hierarchical concepts of IDEF0 and utilized the Docling tool to assist in the construction process. In the knowledge comprehension evaluation, the introduction of the knowledge graph improved the LLM’s weighted accuracy in mastering MIAT core concepts from 18% to 93%. In the system design assistance tests, LLMs were able to follow the standard MIAT process, gradually guiding or inspiring users to complete system architecture decomposition and discrete event modeling, ultimately generating code with a hierarchical and modular structure. Furthermore, a comparative evaluation between Vibe Coding and MIAT methodology-generated code using four different LLMs showed that code generated following the MIAT methodology significantly outperformed that of Vibe Coding in terms of structure and maintainability. The MIAT methodology not only ensures logical consistency and system stability in code generation but also greatly enhances the ease of future system expansion and maintenance. Based on comprehensive experimental results, MIAT-KG is demonstrated to effectively strengthen LLM capabilities in assisting complex system design, enhancing the professionalism and controllability of code generation, and providing significant value for medium- to large-scale system development.
    顯示於類別:[資訊工程學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML6檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明