English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 60038072      線上人數 : 883
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98169


    題名: SAHAD:聲音異常居家活動偵測網路;SAHAD: Home Activity Anomaly Detection via Sound Sensing Network
    作者: 徐汶伶;Hsu, Wen-Ling
    貢獻者: 資訊工程學系
    關鍵詞: 物聯網;智慧居家;居家監測系統;聲音異常偵測;長期照護;Internet of Things (IoT);Smart Home Monitoring;Ambient Assisted Living;Audio Anomaly Detection;Elder Care
    日期: 2025-06-25
    上傳時間: 2025-10-17 12:27:07 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著全球人口高齡化加劇,居家安全監測已成為智慧長照系統中不可或缺的關鍵功能。雖然現行多數監測系統採用視覺型技術以提供即時監控,但卻常引發隱私侵擾與監視壓力,進而降低使用接受度與系統實用性。為解決此問題,本研究提出一種基於聲音感測的非視覺監控系統——聲音異常居家活動偵測系統(SAHAD),結合深度學習模型與分散式通訊架構,實現具隱私保障、可擴展且具實用性的異常監測機制。系統依據 MIAT 方法論進行模組化設計,包含三大功能模組:聲音採集子系統負責擷取與傳輸環境聲訊,異常辨識子系統運用深度學習模型進行危險聲音識別,監控介面子系統提供設備管理與即時通報功能。系統採用 DDS(Data Distribution Service)通訊協定,確保多節點間資料傳輸的可靠性與即時性,同時支援動態裝置識別與擴展部署。實驗結果顯示,SAHAD 能準確辨識多種居家與異常聲音,具備高偵測效能與低安裝門檻,特別適用於獨居長者或長照機構的安全需求。相較傳統視覺監控技術,本系統在隱私保護、可用性與擴充性方面具顯著優勢,為智慧長照應用提供具潛力的創新解決方案。;With the rapid growth of the aging population, home safety monitoring has become a critical component of smart elderly care systems. While vision-based monitoring technologies offer intuitive surveillance, they often raise concerns about privacy and intrusiveness, limiting their long-term acceptance. This paper proposes the Sound-based Abnormal Home Activity Detection (SAHAD) system as a non-visual alternative that leverages audio sensing, deep learning, and a decentralized communication framework. The proposed system is developed using the MIAT methodology and consists of three functional modules: an audio acquisition subsystem for environmental sound collection and transmission, an abnormal sound recognition subsystem utilizing deep learning models, and a monitoring interface subsystem for device management and real-time alerting. The system is built on a Data Distribution Service (DDS)-based communication protocol, enabling reliable multi-node data exchange and dynamic device discovery, thereby addressing the scalability and latency limitations of centralized architectures. Experimental results demonstrate the system’s ability to accurately detect a variety of household and abnormal sounds with low deployment complexity. SAHAD provides a privacy-preserving and scalable solution suited for both independent elderly living and institutional care, contributing to enhanced safety without compromising user acceptance.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML9檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明