English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59217803      線上人數 : 719
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98189


    題名: WGAN-GP生成對抗網路和集成學習技術 增強信用卡詐欺偵測;Enhancing Credit Card Fraud Detection Using WGAN-GP Generative Adversarial Networks and Ensemble Learning Techniques
    作者: 陳奕勳;Chen, Yi-Hsun
    貢獻者: 資訊工程學系在職專班
    關鍵詞: 類別不平衡;生成對抗網路(GAN);帶有梯度懲罰的 Wasserstein GAN(WGAN-GP);堆疊模型集成學習;信用卡詐欺偵測;Class imbalance;Generative Adversarial Network (GAN);Wasserstein GAN with Gradient Penalty (WGAN-GP);Stacking ensemble learning;Credit card fraud detection
    日期: 2025-07-22
    上傳時間: 2025-10-17 12:28:21 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著線上交易的依賴日益增加,信用卡詐欺的風險亦顯著提升,對金融機構與消費者造成重大挑戰。由於真實世界資料集中存在嚴重的類別不平衡問題,使得詐欺偵測更加困難。為改善此一問題,本研究提出一套混合式偵測架構,結合具梯度懲罰的Wasserstein生成對抗網路以產生多樣且逼真的詐欺樣本,並採用堆疊式集成分類器整合傳統機器學習模型與深度學習架構。

    本研究選用兩組公開Kaggle競賽資料集進行實驗評估,包括Credit Card Fraud Detection(詐欺比例僅0.17%)與IEEE-CIS Fraud Detection(詐欺比例為3.52%),兩者皆具有極端類別不平衡特性。實驗結果顯示,所提出方法在多項評估指標上均優於SMOTE與ADASYN等過採樣技術,並於中高增強倍率下展現顯著的召回率與F1分數提升,同時維持高精確率。

    本研究的主要貢獻包括:透過引入梯度懲罰與頻譜正規化來穩定對抗式生成模型的訓練過程,並建構一個結合多種模型優勢的堆疊式架構,以提升詐欺交易偵測的準確性與穩定性,並系統性分析增強倍率對詐欺偵測成效之影響。本架構可作為高度不平衡交易環境下詐欺偵測的穩健且具擴展性的解決方案。
    ;The escalating reliance on online commerce has significantly heightened exposure to credit card fraud, posing critical challenges for financial institutions and consumers alike. Addressing this issue is complicated by the severe class imbalance inherent in real-world datasets. To mitigate this, we propose a hybrid detection framework that integrates a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) to generate diverse and realistic fraud samples, and a stacking ensemble classifier that combines conventional machine learning models (Random Forest, XGBoost, LightGBM, CatBoost) with deep learning architectures (DNN, CNN, LSTM). valuations are conducted on two publicly available Kaggle competition datasets—Credit Card Fraud Detection (with only 0.17% fraudulent cases) and IEEE-CIS Fraud Detection (3.52% fraud rate)—both of which are characterized by extreme class imbalance. Experimental results demonstrate that the proposed method consistently outperforms baseline oversampling techniques such as SMOTE and ADASYN across multiple evaluation metrics. The system achieves peak performance at optimized augmentation levels, with significant gains in recall and F1-score while maintaining high precision.Key contributions of this work include stabilizing adversarial training through gradient penalties and spectral normalization, constructing an effective stacking architecture that leverages heterogeneous model strengths, and systematically analyzing the impact of augmentation scale on detection outcomes. This framework provides a robust and scalable solution for enhancing fraud detection in highly imbalanced transactional environments.
    顯示於類別:[資訊工程學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML14檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明