中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98192
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 59223072      在线人数 : 504
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98192


    题名: 基於中醫脈搏特徵的低運算資源個人身分識別系統設計;Design of a Low-Resource Personal Identity Recognition System Based on Traditional Chinese Medicine Pulse Features
    作者: 陳可瑾;Chen, Ke-Jin
    贡献者: 資訊工程學系在職專班
    关键词: 生物辨識;脈搏;孿生網路;機率神經網路;Biometrics;PPG;Siamese Network;Probabilistic Neural Network;Photoplethysmography
    日期: 2025-07-28
    上传时间: 2025-10-17 12:28:27 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究提出一種基於中醫脈診特徵與PPG感測技術之低計算資源的個人身分識別系統,目的是提升穿戴式裝置中身份辨識的性能和效率。本研究採用接觸式PPG感測器直接擷取脈搏訊號。為降低記憶體與運算資源的需求,我們引入中醫血液循環共振理論,從PPG訊號中提取12個固定諧振頻率作為脈診特徵,取代傳統依賴時域與頻域複雜特徵擷取的作法。在這基礎上,我們設計一個結合孿生網路與機率式神經網路的混合模型,作為身分識別分類器,以取代常見但計算成本高的CNN分類器。實驗結果顯示,本方法在保有高識別率的同時,顯著減少記憶體使用與推論時間,極具應用於嵌入式穿戴設備之潛力,並開創中醫脈診於現代生物特徵識別領域中的創新應用。;This study proposes a low-resource personal identity recognition system based on Traditional Chinese Medicine (TCM) pulse features and PPG (photoplethysmography) sensing technology, aiming to enhance the performance and efficiency of identity verification in wearable devices. Instead of remote imaging, we adopt a contact-based PPG sensor to directly acquire pulse signals. To reduce memory usage and computational overhead, we introduce the TCM theory of blood circulation resonance and extract 12 fixed resonance frequencies from the PPG signals as pulse features, replacing traditional time-domain and frequency-domain feature extraction methods. Building on this, we design a hybrid model that combines a Siamese network with a Probabilistic Neural Network (PNN) as the identity classifier, in place of conventional yet computationally intensive CNN-based models. Experimental results show that the proposed method maintains high recognition accuracy while significantly reducing memory usage and inference time. This demonstrates strong potential for deployment in embedded wearable devices and represents an innovative integration of TCM pulse diagnosis into modern biometric identification systems
    显示于类别:[資訊工程學系碩士在職專班 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML13检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明