English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59508339      線上人數 : 620
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98194


    題名: 應用深度學習與檢索增強生成技術於類別圖品質檢核 之自動化分析方法──以繼承結構設計為例;An Automated Analysis Method for Quality Assessment of Class Diagrams Using Deep Learning and Retrieval Augmented Generation: A Focus on Inheritance Structure Design
    作者: 曾國瑋;Tseng, Kuo-Wei
    貢獻者: 資訊管理學系
    關鍵詞: 類別圖;深度學習;大型語言模型;檢索增強生成;軟體品質;Class Diagram;Deep Learning;Retrieval-Augmented Generation;Large Language Model;Software Quality
    日期: 2025-06-12
    上傳時間: 2025-10-17 12:28:28 (UTC+8)
    出版者: 國立中央大學
    摘要: 類別圖是軟體設計的重要工具,在初期設計階段用於描述系統中類別之間的
    結構與關係,協助軟體工程師在程式開發階段清楚掌握程式整體架構。然而,類
    別圖中的潛在設計問題可能在未經系統實際運行的情況下難以察覺,進而導致後
    續開發困難、維護成本上升,並降低系統的可擴展性。此外,現有的自動化分析
    工具多僅具備基本指標分析功能,缺乏提供具體改進建議的能力。為解決上述問
    題,本研究聚焦於提升類別圖設計品質,特別針對繼承關係架構設計方面,建立
    一個自動評估類別圖架構品質的系統,名為Class Diagram Analysis Assistant,簡
    稱CDAA。CDAA系統結合YOLOv11(You Look Only Once)深度學習模型與檢
    索增強生成(Retrieval-Augmented Generation, RAG)技術。具體而言,CDAA 透過
    YOLOv11 進行物件檢測,從類別圖中自動提取結構元素,如類別、箭頭及繼承
    線等,並藉由 RAG 技術檢索相關設計規範與研究知識,再透過大型語言模型
    (Large Language Model, LLM)分析繼承架構的合理性,協助開發者快速發現並解
    決潛在問題。在操作上,CDAA能以自然語言提問,並整合研究知識進行推理以
    提供更全面的修改建議,協助使用者更有效率地發現類別圖中的設計缺陷,改善
    現有方法檢測效率低與分析不精確的問題,進而降低維護成本,確保系統的長期
    可維護性與穩定性。;Class diagrams are essential tools in software design, During the early design
    phase where they describe the structure and relationships between classes, assisting
    software engineers in comprehending the overall architecture prior to implementation.
    However, potential design flaws in class diagrams may be difficult to detect without
    executing the system, which can lead to development challenges, increased
    maintenance costs, and reduced system scalability. Moreover, most existing automated
    analysis tools focus only on basic metric evaluations and lack the capability to provide
    concrete modification suggestions. To address these issues, the study proposes a system
    named Class Diagram Analysis Assistant (CDAA), which aims to improve class
    diagram design quality, with a particular focus on evaluating inheritance structures.
    CDAA integrates the YOLOv11 (You Only Look Once) deep learning model with
    Retrieval-Augmented Generation (RAG) techniques. Specifically, YOLOv11 performs
    object detection to automatically extract structural elements from class diagrams, such
    as classes, arrows, and inheritance lines. RAG is then employed to retrieve relevant
    design guidelines and academic knowledge, which are further processed by a Large
    Language Model (LLM) to analyze the appropriateness of inheritance structures.
    CDAA allows users to interact through natural language queries and leverages
    integrated knowledge and reasoning to generate comprehensive design improvement
    suggestions. This approach enhances the precision and efficiency of class diagram
    analysis, helping users to identify and resolve design flaws more effectively. Ultimately,
    the system aims to reduce maintenance costs and ensure long-term maintainability and
    stability of software systems.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML12檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明