English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59351207      線上人數 : 758
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98206


    題名: 評估檢索增強生成技術中模型類型選擇、提示工程與檢索策略對回應品質改善效果之研究;A Study on the Effects of Model Selection, Prompt Engineering, and Retrieval Strategies on Response Quality Improvement in Retrieval-Augmented Generation
    作者: 劉冠杰;Liu, Guan-Jie
    貢獻者: 資訊工程學系
    關鍵詞: 檢索增強生成;提示工程;向量資料庫;程式設計教育;大型語言模型;檢索增強生成評;生成式人工智慧;Retrieval-Augmented Generation (RAG);Prompt Engineering;Vector Database;Programming Education;Large Language Models (LLMs);Retrieval-Augmented Generation Assessment (RAGAS);Generative AI
    日期: 2025-07-01
    上傳時間: 2025-10-17 12:29:35 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究探討檢索增強生成技術如何提升生成式人工智慧在程式設計教育中的有效性。本研究深入比較了整合到RAG系統的商業與開源大型語言模型,檢視檢索設計和提示工程如何影響所產生回應的品質。透過建立專門針對機器學習課程的資料庫,並使用RAGAS評估框架,本研究基於五項品質指標對五個知名模型(GPT-4o、Claude-3.7-Sonnet、Gemini-2.0-Flash、Llama3.3-70b和Ministral-8b)進行比較分析。研究發現不同模型類型間存在顯著的性能差異,其中結構化推理提示(思維鏈和退一步思考)被證實是提升整體模型性能的強力因子。Re-ranking策略被證明是最有效的檢索方法,特別是在提升輕量級開源模型的性能方面。本研究為經濟可行的RAG系統在程式設計教育中的有效性提供了實證證據,有助於縮小商業模型與開源模型之間的性能差距,並為資源受限的教育環境提供實際解決方案。;This study examines how Retrieval-Augmented Generation enhances the effectiveness of generative artificial intelligence in programming education. An in-depth comparison is made between commercial and open-source large language models incorporated into the RAG system, examining how retrieval design and prompt engineering affect the quality of responses produced. By creating a database specific to machine learning courses and using the RAGAS evaluation framework, a comparative analysis of five prominent models (GPT-4o, Claude-3.7-Sonnet, Gemini-2.0-Flash, Llama3.3-70b, and Ministral-8b) is conducted based on five quality metrics. The findings reveal considerable performance differences between different model types, with structured reasoning prompts (Chain-of-Thought and Take a Step Back) proving powerful drivers of overall model performance. Re-ranking proves to be the most effective retrieval approach, especially in enhancing the performance of lightweight open-source models. This research provides empirical evidence for the effectiveness of economically feasible RAG systems in programming education, thus helping bridge the gap in the performance of commercial and open-source models and providing real-world solutions for resource-constrained educational settings.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML19檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明