中大學術數位典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98217
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83956/83956 (100%)
Visitors : 62505708      Online Users : 727
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98217


    Title: 深度學習模型於桌上型電腦零件碳排預測之研究;A Study on Predicting Carbon Emissions of Desktop Computer Components Using Deep Learning Models
    Authors: 吳浩瑋;Wu, Hao-Wei
    Contributors: 資訊管理學系在職專班
    Keywords: 深度學習;碳排放預測;類神經網路;知識蒸餾;ESG永續發展;Deep Learning;Carbon Emission Prediction;Neural Network;Knowledge Distillation;ESG Sustainability
    Date: 2025-06-25
    Issue Date: 2025-10-17 12:30:24 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 面對全球永續與碳中和目標,企業急需於產品設計階段導入低碳策略。桌上型電腦作為高碳電子產品,其零組件在材料與製造等環節皆會影響碳排放,而現行碳排放大多於生產後評估,無法於設計初期即時預測。
    本研究提出一套深度學習預測模型,結合自編碼器進行特徵選取、類神經網路進行碳排放回歸預測,並導入知識蒸餾以強化模型精準度與效能。研究建立桌上型電腦零組件碳排放資料集,並於高效能、商務型與輕量型產品中進行模型驗證。
    實驗結果顯示,該模型可於設計初期有效預測各組件碳排放,協助企業優化設計並落實低碳設計目標,對電子產業永續發展具有高度實務應用價值。;In the face of global sustainability and carbon neutrality goals, enterprises urgently need to implement low-carbon strategies during the product design stage. Desktop computers, as high-carbon electronic products, generate emissions throughout material selection and manufacturing processes. However, current carbon footprint assessments are mostly conducted post-production, lacking the ability to predict emissions early in the design phase.
    This study proposes a deep learning-based predictive model that integrates autoencoders for feature selection, neural networks for carbon emission regression, and knowledge distillation to enhance model accuracy and performance. A carbon emission dataset of desktop computer components was constructed and the model was validated across high-performance, business, and lightweight product categories.
    Experimental results show that the proposed model can effectively predict component-level carbon emissions during the early design phase, assisting enterprises in optimizing product design and achieving low-carbon goals. This approach provides strong practical value for promoting sustainability in the electronics industry.
    Appears in Collections:[Executive Master of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML78View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明