English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59279832      線上人數 : 1181
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98238


    題名: 以分群法為基礎的對比式學習應用於晶圓製程品質監控;A Novel Cluster-Based Contrastive Learning for Quality Monitoring on Semiconductor Wafer Manufacturing
    作者: 曹照堃;Cao, Jhao-Kun
    貢獻者: 資訊管理學系在職專班
    關鍵詞: 瑕疵檢測;工業4.0;對比式學習;FDC;Industry 4.0;semiconductor foundry;defect detection
    日期: 2025-07-07
    上傳時間: 2025-10-17 12:31:44 (UTC+8)
    出版者: 國立中央大學
    摘要: 在工業4.0浪潮驅動下,晶圓代工產業加速導入智慧製造技術,透過感測器佈建與資料驅動模型,實現對製程設備與產品品質的即時監控。隨著製程複雜度提升與良率要求日益嚴苛,缺陷偵測與分類(Fault Detection and Classification, FDC)成為關鍵技術。然而,實際製程中產生的高維時間序列資料,常伴隨噪音干擾、特徵重疊與類別不平衡,使傳統統計與機器學習方法難以穩定運作。本研究提出一套整合多模態特徵與語意對比策略的瑕疵辨識方法,將時間域與頻率域訊號特徵共同納入分析架構中,進一步透過樣本間的語意關係學習,提升異常樣本的可辨識性與類別分離度。為強化結構表徵,亦引入資料分群觀點輔助模型學習資料內部結構與變異趨勢。實驗顯示,本方法能有效降低誤判與漏報風險,在多種時間序列資料集上展現出良好的準確性與穩健性,提供一項具實務可行性的FDC智慧監控解決方案。;Under the momentum of Industry 4.0, the semiconductor foundry industry is rapidly adopting smart manufacturing technologies to achieve real-time monitoring of equipment conditions and product quality through sensor deployment and data-driven models. As process complexity increases and yield requirements become more stringent, Fault Detection and Classification (FDC) has emerged as a critical enabler in modern fabs. However, time-series data generated from manufacturing sensors are often high-dimensional, noisy, and affected by class imbalance and overlapping features, making traditional statistical or machine learning methods inadequate for reliable detection. This study proposes a defect identification approach that integrates multi-modal feature representations and semantic contrastive strategies. By jointly analyzing signals in both time and frequency domains, and learning semantic relationships between samples, the method enhances anomaly separability and representation clarity. A clustering-based perspective is further introduced to capture latent data structures and process variation patterns. Experimental results demonstrate improved accuracy and reduced false detections across diverse time-series datasets, validating the approach as a practical and scalable solution for FDC in semiconductor process monitoring.
    顯示於類別:[資訊管理學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML23檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明