English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 57847915      線上人數 : 4129
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98272


    題名: DCB-CL: Dynamic Centroid-Based Contrastive Learning with Knowledge Distillation
    作者: 蕭鈺宸;Hsiao, Yu-Chen
    貢獻者: 資訊管理學系
    關鍵詞: 表徵學習;自監督式對比學習;深度分群;知識蒸餾;Representation Learning;Self-supervised Contrastive Learning;Deep Clustering;Knowledge Distillation
    日期: 2025-07-14
    上傳時間: 2025-10-17 12:34:10 (UTC+8)
    出版者: 國立中央大學
    摘要: 過去十年來,自監督式影像辨識的發展顯著影響了電腦視覺領域。然而,現有的自監督式對比學習方法在影像分類與辨識中仍面臨挑戰,包括類別內部分散、類別之間重疊,以及聚類不穩定性。本論文提出基於動態質心之對比式學習(DCB-CL)與知識蒸餾方法,這是一種整合對比學習、聚類的機制與特徵對齊的新方法,以提升特徵表徵。我們的方法首先引入動態質心的更新機制與異常值得消除策略,以減少聚類的不穩定性,同時優化類別內的特徵分佈,提升類別內的一致性與類別之間的區別性。此外,我們採用教師-學生知識蒸餾架構,透過教師網路將高階語義資訊傳遞給學生網路,以確保特徵表徵的穩定性與對齊性。透過廣泛的實驗,我們證明 DCB-CL 在多個真實世界的資料集上優於最先進的基線,顯著提升表徵學習品質,強化特徵一致性並降低類間混淆,進一步驗證其在真實世界圖像識別中的強泛化能力。;Over the past decade, advancements in self-supervised image recognition have significantly influenced the field of computer vision. However, existing self-supervised contrastive learning methods still face challenges in image classification and recognition, including intraclass dispersion, inter-class overlap, and clustering instability. This paper introduces Dynamic Centroid-Based Contrastive Learning (DCB-CL) with Knowledge Distillation, a novel approach that integrates contrastive learning, clustering mechanisms, and feature alignment to enhance feature representation. Our method first incorporates a dynamic centroid updating mechanism and an Outlier Elimination Strategy to mitigate clustering instability, while further
    refining class-wise feature distributions to improve intra-class consistency and inter-class separability. Additionally, we employ a teacher-student knowledge distillation framework, where the teacher network transfers high-level semantic information to the student, ensuring stable and well-aligned feature representations. Through extensive experiments, we demonstrate that DCB-CL outperforms state-of-the-art baselines on multiple real-world datasets, significantly enhancing representation learning quality, strengthening feature consistency, and reducing inter-class confusion, further validating its strong generalization capability in real-world image
    recognition.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML6檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明