中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98276
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59588354      Online Users : 1213
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98276


    Title: Multi-Scale Cross-Modal Fusion for Facial Expression Recognition
    Authors: 許顥蓉;Hsu, Hao-Jung
    Contributors: 資訊工程學系
    Keywords: 面部表情識別;電腦視覺;Facial Expression Recognition;Computer Vision
    Date: 2025-07-21
    Issue Date: 2025-10-17 12:34:21 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 面部表情識別已成為計算機視覺和模式識別領域的重要研究方向,在人機互動、情感計算、心理健康評估和智能監控等應用中發揮著關鍵作用。然而,面部表情識別任務面臨著類間相似性、類內差異性和類別不平衡等重大挑戰,這些挑戰在非受控或野外環境中更為嚴峻,進而削弱了模型的辨識準確性與穩定性。本研究旨在解決上述問題,故提出了一種新穎的多尺度跨模態融合模型方法,整合圖像特徵和面部關鍵點資訊進行表情識別。此外,我們採用針對性的數據增強和專門的損失函數來處理類別不平衡問題。根據實驗結果表明,我們的方法在AffectNet和RAF-DB數據集上均實現顯著進步,優於現有的頂尖面部表情識別模型。;Facial expression recognition has emerged as a significant area of study within computer vision and pattern recognition, contributing to a wide range of applications, including human-computer interaction, affective computing, mental health assessment, and intelligent surveillance. Nevertheless, facial expression recognition encounters significant challenges including inter-class similarity, intra-class difference, and class imbalance, which are particularly prominent in wild environments and affect the accuracy and reliability of recognition systems. To effectively deal with these challenges, we propose a novel multi-scale cross-modal fusion approach that integrates image features and facial landmark information for expression recognition. Additionally, we employ targeted data augmentation and a specialized loss function to handle class imbalance issues. Experimental results verify that our approach surpasses existing state-of-the-art facial expression recognition models, achieving significant improvements on the widely used AffectNet and RAF-DB benchmark datasets.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML8View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明