中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98283
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59162680      Online Users : 928
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98283


    Title: Text-Guided Dynamic Structure Prediction for Category-Agnostic Pose Estimation
    Authors: 林冠斌;Lin, Guan-Bin
    Contributors: 資訊工程學系
    Keywords: 關鍵點偵測;類別無關的姿態估計;Keypoint Detection;Category-Agnostic Pose Estimation
    Date: 2025-07-21
    Issue Date: 2025-10-17 12:34:49 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在電腦視覺領域中,關鍵點偵測是理解物體結構的重要研究方向。這促使
    了類別無關姿態估計(Category-Agnostic Pose Estimation, CAPE)這項新穎
    任務的出現,該任務使用單一模型來定位不同物體類別的關鍵點。為了擴展其
    應用,近期研究已將文字描述納入 CAPE 任務中。然而,將文字描述擴展至
    CAPE 任務時,在骨架資訊學習和圖形資訊傳播方面仍存在不足,使得模型難以
    充分利用結構資訊,進而影響關鍵點定位的精確度。在本論文中,我們提出了
    一個整合語義骨架精煉器(Semantic Skeleton Refiner)並優化 Graph
    Transformer Decoder 架構的模型,利用文字描述的特徵作為動態結構預測的
    引導。我們在 MP-100 資料集上進行實驗,並將我們的模型與 CAPE 領域中現有
    的最先進模型進行比較。實驗結果顯示,我們的方法在 CAPE 領域的表現優於目
    前的領先模型。
    ;In the field of computer vision, keypoint detection is a crucial area of research for
    understanding the structure of an object. This has led to the emergence of Category-
    Agnostic Pose Estimation (CAPE), a novel task that utilizes a single model to lo-
    calize keypoints across diverse object categories. To broaden its application, recent
    research has incorporated text descriptions into the CAPE task. However, when
    extending text descriptions to the CAPE task, shortcomings in skeleton informa-
    tion learning and graph information propagation persist, making it difficult for the
    model to utilize comprehensive structural information, which in turn affects the
    precision of keypoint localization. In this thesis, we propose a model that integrates
    a Semantic Skeleton Refiner and optimizes the Graph Transformer Decoder archi-
    tecture, using features from text descriptions as a guidance for dynamic structure
    prediction. We conducted experiments on the MP-100 dataset and compared our
    model with existing state-of-the-art models in the CAPE domain. The experimental
    results indicate that our method outperforms current leading models in the field of
    CAPE.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML9View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明