中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98286
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 61605762      Online Users : 1125
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98286


    Title: CCL-FDC:用於工業4.0之缺陷檢測與分類的協同對比學習架構;CCL-FDC: Collaborative Contrastive Learning for Fault Detection and Classification in Industry 4.0
    Authors: 劉冠甫;Liu, Kuan-Fu
    Contributors: 資訊管理學系
    Keywords: 工業4.0;深度學習;對比學習;缺陷檢測與分類(FDC);Industry 4.0;deep learning;Contrastive Learning;Fault Detection and Classification (FDC)
    Date: 2025-07-16
    Issue Date: 2025-10-17 12:35:03 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 由於感測與控制技術的重大進展,在工業4.0時代,缺陷檢測與分類(Fault Detection and Classification, FDC)已成為製造過程中的一項關鍵任務。近年來,對於對比式學習(Contrastive Learning, CL)技術的關注顯著增加,其目標是將資料轉換為具判別性的嵌入式表示。特別是在時間序列應用中,CL 能夠直接處理複雜的原始數據,以優化後續的檢測與分類效能。然而,由於工業環境的複雜性與多樣性,在工業時間序列場景中應用對比式學習仍面臨諸多挑戰。本研究提出了一種新穎的工業時間序列協同對比式學習框架 CCL-FDC,以解決工業應用中的多項難題。CCL-FDC 框架基於所提出的協同質心概念,同時訓練時間域與頻率域編碼器,以從時間與頻率兩個維度中同步提取並融合特徵,進而生成高度具判別力的嵌入式表示。我們在真實工業數據集上進行了大量實驗,驗證 CCL-FDC 在各項評估指標上相較於現有先進方法的優越性。我們亦透過案例研究展示該框架在智慧製造缺陷分類上的實用性。;Owing to the great advances of sensing and cybernetic technologies, in industry 4.0, Fault Detection and Classification (FDC) has become an essential task in manufacturing processes. Recently, significant attentions have been put forward to the contrastive learning (CL) technique, which aims to transform data into discriminative embedding representations. Especially on time-series application, CL could directly tackle the complicated raw data in models to optimize downstream detection and classification performance. However, due to the complexity and diversity of industry environment, applying contrastive learning in industrial time-series scenarios still faces various obstacles. In this study, we propose a novel Collaborative Contrastive Learning on FDC, CCL-FDC framework, which solves several challenges in industry applications. Based on the introduced concept of collaborative centroid-orientation, the CCL-FDC framework trains both time- and frequency-based encoders to generate highly discriminative embedding representations by extracting and integrating both features from time and frequency dimensions concurrently. Extensive experiments are conducted on real industrial datasets to demonstrate the superiority of CCL-FDC over the state-of-the-art methods in terms various evaluation metrics. We also use a case study to show the practicability of the proposed framework on fault classification in smart manufacturing.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML34View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明