中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98287
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 61092744      Online Users : 774
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98287


    Title: Transformer-based Gloss-free Sign Language Translation
    Authors: 江子青;Chiang, Zi-Cing
    Contributors: 資訊工程學系
    Keywords: 手語翻譯
    Date: 2025-07-21
    Issue Date: 2025-10-17 12:35:07 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 全球有超過四億三千萬人受致殘性聽力損失影響,溝通障礙常在教育、就業和社會融合方面造成重大挑戰,這使得手語翻譯(SLT)成為促進更無障礙與共融社會的關鍵領域。為應對這些障礙,本論文提出一個基於Transformer 的框架,旨在將手語影片直接翻譯為文本,以克服時空複雜性與高昂標註成本等關鍵挑戰。我們的架構整合了自適應遮蔽與融合模組、上下文位置編碼以及詞元級對比損失,以提升翻譯準確性及多模態對齊效果。該模型表現優於現有方法,在公開基準數據集上達到了頂尖的精確度
    與流暢度,同時在更具挑戰性的對話型數據上展現出強大的泛化能力。此整合式架構證實其有效,為生成準確、流暢的翻譯提供了一種卓越的方法,並推動了免詞彙庫模型的技術前沿。;With over 430 million people worldwide affected by disabling hearing loss, communication barriers often create significant challenges in education, employment, and social integration, making Sign Language Translation (SLT) a crucial field for fostering a more accessible and inclusive society. To address these barriers, we introduce a Transformer-based framework designed to translate sign language videos directly into text, confronting key challenges like spatio-temporal complexity and costly annotation. Our architecture integrates an Adaptive Masking and Fusion module, Contextual Position Encoding, and a Token-Level Contrastive Loss to enhance accuracy and multimodal alignment. The model outperforms existing approaches, demonstrating a state-of-the-art level of precision and fluency on public benchmarks and a strong generalization on more challenging conversational data. Ultimately, this integrated architecture proves highly effective, offering a superior method to generate accurate and fluent translations compared to existing gloss-free models.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML26View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明