中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98301
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 60039380      在线人数 : 945
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98301


    题名: 融合細胞間潛在交互作用之可解釋性深度 學習模型應用於肺腺癌淋巴結轉移預測展ˋˊ矮
    作者: 李軒豪;Li, Syuan-Hao
    贡献者: 資訊工程學系
    关键词: 淋巴結轉移預測;可解釋深度學習;單細胞轉錄體定序;批量轉錄體定序;細胞間通訊;Lymph node metastasis prediction;Explainable deep learning;Single-cell RNA sequencing;Bulk RNA sequencing;Cell-cell communication
    日期: 2025-07-21
    上传时间: 2025-10-17 12:36:38 (UTC+8)
    出版者: 國立中央大學
    摘要: 淋巴結轉移的預測在腫瘤學中仍然是一項重大挑戰,尤其是在小樣本資料集中,傳統預測方法往往難以捕捉到生物意義。本研究開發了一個神經網路模型,整合基因表達與單細胞的細胞間通訊,用於預測淋巴結轉移。此模型是一個具有生物學知識導向的神經網路,設計目標是具有可解釋性的同時保有一定的預測準確率。我們透過交叉驗證評估模型表現,並與傳統機器學習方法進行比較,在TCGA測試集中,此模型達成0.771的AUROC;在兩組獨立測試集GSE43580和GSE50081中,分別達到0.664與0.771,表現與現有研究成果相當。除了預測準確率外,我們也利用深度學習的可解釋性,找出潛在的生物標記與訊號通路。這證實我們的方法在預測效能與生物意義解釋性之間取得了良好平衡。本研究顯示深度學習在提升轉移預測模型方面的潛力,並為未來將生物交互資訊整合進深度學習模型奠定基礎。;Lymph node metastasis prediction remains a critical challenge in oncology, especially for small datasets where traditional methods struggle to extract meaningful patterns. This study develops a neural network model that integrates gene expression data and cell-cell communication features to predict lymph node metastasis. Our model is a biologically informed neural network, specifically designed to be interpretable while preserving high predictive accuracy. We evaluate its performance through cross-validation and compare it against traditional machine learning methods. Our model achieved an area under receiver operating characteristic curve (AUROC) of 0.771 on The Cancer Genome Atlas program (TCGA) testing set, and 0.664 and 0.771 on independent test sets GSE43580 and GSE50081, respectively, which is comparable to current research results. In addition to predictive accuracy, our model leverages interpretability from deep learning to identify potential biomarkers and signaling pathway. This demonstrates that our approach achieves a balance between predictive performance and biological interpretability. This study highlights the potential of deep learning in improving predictive modeling for metastasis risk assessment and provides a foundation for future research integrating biological interactions into computational models.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML9检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明