中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98307
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59566572      Online Users : 912
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98307


    Title: A Robust and Generalizable Framework for Chinese Named Entity Recognition
    Authors: 王俊顏;Wang, Chun-Yen
    Contributors: 資訊工程學系
    Keywords: 中文命名實體識別;自然語言處理;Chinese Named Entity Recognition;Natural Language Processing
    Date: 2025-07-22
    Issue Date: 2025-10-17 12:37:06 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 中文命名實體識別(NER)作為自然語言理解領域的一項基礎任務,
    在從非結構化文本中萃取結構化知識方面扮演著關鍵角色。然而,
    其效能常受中文語言固有的歧義性所限制,例如缺乏明確的詞彙邊
    界及大寫標記,這對其識別準確性構成重大挑戰。為應對此挑戰,
    本研究提出了一種具備魯棒性(robustness)及泛化能力的中文命名
    實體識別框架。此框架運用預訓練語言模型以生成深度的上下文嵌
    入表徵。這些嵌入表徵再整合進上下文感知模組,此感知模組旨在
    增強位置理解與消除歧義性。此外,該框架亦整合一種對抗式訓練
    技術以提升模型魯棒性,並結合條件隨機場(CRF)層來確保最終輸
    出的結構一致性。為驗證此框架的有效性,我們在來自社交媒體與
    醫療保健領域的資料集上進行了全面的評估。實驗結果證明,我們
    所提出的框架在性能表現上超越了當前最先進的模型。
    ;Chinese Named Entity Recognition (NER) serves as a cornerstone to transform
    unstructured text into structured knowledge. However, its efficacy is frequently
    constrained by inherent linguistic ambiguities in the Chinese language, such as the
    absence of explicit word boundaries and capitalization, which poses significant chal-
    lenges to recognition accuracy. In response to this, we introduce a robust and gener-
    alizable framework for Chinese NER. The proposed framework utilizes a pre-trained
    language model to generate deep contextual embeddings. These embeddings are
    integrated with a contextual awareness module to enhance positional understand-
    ing and resolve ambiguity. Furthermore, the framework incorporates an adversarial
    training technique to improve model robustness and a conditional random field layer
    to ensure structural coherence of the final output. To validate the effectiveness of
    the framework, we conducted comprehensive evaluations on diverse datasets from
    the social media and healthcare domains. The experimental results reveal that our
    proposed framework outperforms existing leading models in Chinese NER.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML6View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明