中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98316
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 60897384      Online Users : 8559
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98316


    Title: 基於演化算法的透射型超表面場型合成與設計於衛 星之應用;Pattern Synthesis and Design of Evolutionary AlgorithmBased Transmissive Metasurfaces for Satellite Applications
    Authors: 黃孟可;Huang, Meng-Ke
    Contributors: 電機工程學系
    Keywords: 衛星天線系統;超表面;演化算法超表面;基因演算法;場型合成
    Date: 2025-05-22
    Issue Date: 2025-10-17 12:37:31 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本文主要探討演化算法超表面應用於衛星天線系統中的設計與優化,特別針對不同的場型合成方法進行了深入分析與比較。本研究分為三個主要部分:第一部分為超表面單元元件的設計,第二部分探討不同場型合成方法的應用,第三部分則使用基因演算法優化演化算法超表面的輻射場型,以提升性能表現。
    本研究所設計的演化算法超表面由不鏽鋼製成,其耐高溫、耐高壓的特性使其特別適用於衛星天線領域。針對該應用中常見的球面波阻塞效應,本文提出了一種全金屬結構設計,並通過調整結構的尺寸、形狀及金屬層數來實現理論上的相位補償特性。透過這些設計,可進一步模擬透射式超表面並評估其電磁性能。
    傳統上,超表面透過相位補償公式計算單元元件所需的補償相位,以實現波束方向的控制,但其波束合成效果受到超表面尺寸的限制。對比模擬結果發現,當超表面2的主波束預期朝 30 度方向輻射時,旁瓣抑制效果不顯著,且主波束的輻射方向與理論值存在顯著偏差。此外,當編碼超表面1設計對稱雙波束朝\pm30 度方向輻射時,模擬結果亦未能達到理論預期的雙波束效果。
    基於上述挑戰,本文採用最佳化方法,結合基因演算法來優化演化算法超表面的設計。透過最佳化過程,本文設計並模擬了五種演化算法超表面,成功實現了高增益、波束掃描、對稱雙波束與非對稱雙波束的場型合成。這些結果證實了最佳化方法在演化算法超表面設計中的有效性,並為未來在衛星天線系統中的應用提供了新的設計思路與技術參考。
    ;This thesis investigates the design and optimization of Evolutionary Algorithm-Based Metasurfaces (EAMS) for satellite antenna systems, with a focus on comparing alternative pattern-synthesis strategies. The study comprises three main sections. First, it presents the design of individual metasurface unit cells. Second, it analyzes different beam-forming techniques and their practical limitations. Third, it employs a genetic algorithm to optimize the radiation patterns of the proposed EAMS, enhancing overall performance.
    The metasurfaces are fabricated from stainless steel, whose high-temperature and high-pressure tolerance makes them well suited to the space environment. To mitigate the spherical-wave blockage commonly encountered in satellite feeds, a fully metallic architecture is developed. By adjusting the unit-cell dimensions, shapes, and layer count, the structure achieves the phase-compensation range predicted by theory. These designs are evaluated through full-wave simulations of transmissive metasurfaces to verify their electromagnetic characteristics.
    Conventional phase-compensation formulas enable basic beam steering but suffer from aperture-size constraints. Simulations show that when Metasurface 2 is aimed at a 30° main beam, sidelobe suppression is inadequate and the actual beam deviates markedly from the target direction. Likewise, a symmetric dual-beam design intended to radiate at ±30° fails to meet theoretical expectations.
    To overcome these challenges, a genetic algorithm is integrated into the design workflow. Five EAMS prototypes are synthesized, demonstrating high gain, wide-angle beam scanning, symmetric dual beams, and asymmetric dual beams. The results confirm that evolutionary optimization significantly improves metasurface performance and offer practical guidance for future satellite antenna applications.
    Appears in Collections:[Graduate Institute of Electrical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML27View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明