中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98334
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59577052      Online Users : 1057
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98334


    Title: Adaf-Spectrogram:基於能量分布之自適應頻率軸頻譜圖設計;Adaf-Spectrogram:An Adaptive Frequency-Axis Spectrogram Designed from Energy Distribution
    Authors: 陳定言;Chen, Ding-Yan
    Contributors: 資訊工程學系
    Keywords: 頻譜圖;自適應頻譜圖;時間序列;時頻分析;Spectrogram;Adaptive Spectrogram;Time Series;Time-Frequency Analysis
    Date: 2025-07-28
    Issue Date: 2025-10-17 12:38:38 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在當代訊號處理與人工智慧應用領域中,頻譜圖(Spectrogram)作為一種將時間域訊號轉換為時頻域的視覺化表示方式,已廣泛應用於人體動作辨識、生物醫學分析、語音識別以及環境聲音分類等多種研究領域。其中,梅爾頻譜圖(Mel-Spectrogram)作為頻譜圖的一種重要衍生,因其模擬人耳對頻率的感知特性,對頻率軸進行非線性壓縮,能更有效保留語音訊號中的語意與韻律結構,已成為目前最常用且具表達力的聲學特徵之一。透過直觀且細膩的時頻資訊呈現,頻譜圖可有效揭露訊號中潛在的時變頻率特性,並為深度學習模型提供高辨識度的輸入特徵,特別是在卷積神經網路(CNN)架構中展現出卓越的分類與辨識能力。

    本論文基於上述兩種頻譜圖,提出了一種自適應頻率軸頻譜圖(Adaptive Frequency Spectrogram, Adaf-Spectrogram)。該頻譜圖透過計算整體資料集的頻率能量分布,自動調整頻率軸的尺度縮放,以更有效地突顯訊號中的關鍵頻率特徵。實驗結果證明,此自適應頻率軸頻譜圖在多種資料集上均具良好適應性,並且在辨識效果上優於傳統頻譜圖(Spectrogram),展現出顯著的性能提升。;In the fields of modern signal processing and artificial intelligence, the spectrogram is a fundamental visual representation that transforms time-domain signals into the time-frequency domain. It has found extensive applications in areas such as human activity recognition, biomedical signal analysis, speech recognition, and environmental sound classification. Among these, the Mel-spectrogram is a prominent variant. By emulating the human auditory system′s perception of frequency through non-linear compression of the frequency axis, it more effectively preserves semantic and prosodic information in speech signals. Consequently, it has become one of the most expressive and widely-adopted acoustic features.
    With its intuitive yet detailed time-frequency representation, the spectrogram effectively reveals latent time-variant frequency characteristics within a signal, providing highly discriminative input features for deep learning models. It has demonstrated exceptional performance in classification and recognition tasks, particularly within Convolutional Neural Network (CNN) architectures.

    Building upon these established representations, this paper proposes a novel Adaptive Frequency Spectrogram (Adaf-Spectrogram). This data-driven method automatically adjusts the frequency axis scaling by computing the overall frequency energy distribution across an entire dataset, thereby more effectively emphasizing critical frequency features. Experimental results demonstrate that the proposed Adaf-Spectrogram exhibits excellent adaptability across multiple datasets. Furthermore, it outperforms conventional linear-scale spectrograms in recognition tasks, showcasing a significant performance improvement.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML17View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明