本論文成功實現了針對5G-NR FR2毫米波頻段的高功率且高線性正交直接轉換發射機設計,並應用數位預失真技術有效改善了高功率輸出條件下的線性度。完整的實驗結果,顯示出本論文在實現設計目標上的優異表現。 在第二章所設計CMOS之K頻段高功率功率放大器中,該電路在18 GHz至28 GHz頻段內實現了全頻率超過22 dBm的飽和輸出功率。經過DPD技術補償後,使用LTE Uplink 64-QAM調變訊號進行測試時,成功達到18 dBm的功率輸出,且誤差向量幅度達到-32 dB,顯示出該設計在高功率條件下優異的線性化效果,並超越了其他CMOS功率放大器參考文獻中的最優表現。 在第三章中,CMOS之 K/Ka頻段正交發射機設計成功結合了高功率輸出與高線性度的放大器和反射式調變器。最終實驗結果顯示,無需線性化技術,可在0 dBm輸出功率條件下,成功達成各種高階數位調變訊號的EVM均小於2%。這一創新的電路架構與優異的實驗結果,為現今毫米波發射機設計提供了一個全新的方法。 第四章提出的基於0.12-µm GaN製程的37 GHz至40 GHz正交發射機設計,將高效能正交調變器與差動功率放大器成功整合,顯著提升了功率輸出與轉換增益。經過DPD技術補償後,該設計成功實現了OFDM 4096-QAM調變訊號EVM小於-38 dBc,滿足了IEEE EVM規範要求,並達到9 dBm的輸出功率,證明了GaN技術在高功率應用中的優勢,尤其在高速數位調變技術的發展中,展示了GaN製程技術作為調變器的潛力,因為目前已發表的文獻中使用GaN技術的調變器仍相對稀少。 最後,本論文成功設計並實現了高功率、高線性度的正交直接轉換發射機,並應用了線性化技術顯著改善高功率輸出下的線性度,為未來5G及毫米波通訊系統,不論是CMOS或III-V製程,都提供了具有高性能的發射機設計的方案。 ;This thesis successfully implements a high-power and highly linear I/Q direct conversion transmitter designed for the 5G-NR FR2 millimeter-wave band. By applying digital predistortion (DPD) techniques, the transmitter effectively improves linearity under high-power output conditions. Comprehensive experimental results demonstrate the outstanding performance of this work in achieving its design objectives. In Chapter 2, the designed K-band high-power power amplifier (PA) using CMOS technology achieves saturated output power exceeding 22 dBm across the entire 18 GHz to 28 GHz frequency range. After DPD compensation, testing with LTE Uplink 64-QAM modulation achieves an output power of 18 dBm with an error vector magnitude (EVM) of -32 dB, demonstrating excellent linearization under high-power conditions. This performance surpasses the best results reported in other CMOS PA literature. In Chapter 3, the CMOS K/Ka-band I/Q transmitter integrates high-power amplifiers and reflection-type modulators to achieve both high output power and high linearity. The final experimental results indicate that even without linearization techniques, the transmitter maintains an EVM of less than 2% for various high-order digital modulation signals at 0 dBm output power. This innovative circuit architecture and outstanding experimental results provide a new approach for modern millimeter-wave transmitter design. Chapter 4 presents a 37 GHz to 40 GHz I/Q transmitter based on a 0.12-µm GaN process, successfully integrating a high-performance I/Q modulator with a differential power amplifier to enhance output power and conversion gain. After DPD compensation, the transmitter achieves an EVM of less than -38 dBc for OFDM 4096-QAM modulation while delivering 9 dBm output power. These results validate the advantages of GaN technology in high-power applications, particularly in the development of high-speed digital modulation. Given that GaN-based modulators remain relatively scarce in published literature, this work demonstrates GaN technology′s potential for modulation applications. Finally, this thesis successfully designs and implements a high-power, highly linear I/Q direct conversion transmitter, incorporating linearization techniques to significantly improve linearity at high output power. The proposed transmitter design, applicable to both CMOS and III-V technologies, provides a high-performance solution for future 5G and millimeter-wave communication systems.