中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98352
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59508315      Online Users : 630
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98352


    Title: Optimizing Multi-Hop Question Answering through Post-Retrieval Denoising and Reordering
    Authors: 高璽媛;Kao, Hsi-Yuan
    Contributors: 資訊管理學系
    Keywords: 多跳問答;檢索增強生成;段落重排序;噪音過濾;大型語言模型;資訊檢索;Multi-Hop Question Answering (QA);Retrieval-Augmented Generation (RAG);Passage Reordering;Noise Filtering;Large Language Models (LLMs);Information Retrieval
    Date: 2025-07-24
    Issue Date: 2025-10-17 12:40:15 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 多跳式問答(Multi-hop Question Answering)要求模型從多個相互關聯的證據段落中進行檢索與推理,以得出正確答案。檢索增強生成(Retrieval-Augmented Generation, RAG)架構透過擷取相關文件來提升事實涵蓋率,但往往面臨兩項關鍵缺陷:一是檢索內容中夾雜分散注意力的雜訊,二是缺乏具邏輯性的段落排序。為了解決這些問題,我們提出一個後檢索的兩階段精緻化流程。首先,DenoiseLM 負責過濾無關或具誤導性的段落,以減少幻覺現象,並聚焦模型注意力於有用的證據上;其次,OrderLM 將剩餘段落重新結構為一條連貫的推理鏈,模仿自然的推論步驟。
    在 MuSiQue 基準資料集上的實驗顯示,單獨使用 DenoiseLM 即可比原始檢索結果提升平均答案 F1 分數 +6.4 點,OrderLM 單獨使用僅貢獻 +0.1 點,而結合 DenoiseLM + OrderLM 的完整流程可達到 +6.9 點的整體提升。值得注意的是,兩個模組的少量範例提示學習(Few-shot In-Context Learning, ICL)變體,在跨領域任務中能與完整微調版本相匹敵甚至超越,提供了一種資源效率高的泛化解決方案。這些結果凸顯出,在多跳問答系統中,對檢索內容進行「相關性過濾」與「邏輯性排序」的結構化處理,是提升模型穩健性與精準度的關鍵。;Multi-hop question answering requires models to retrieve and reason over multiple interdependent evidence passages to arrive at correct answers. Retrieval-augmented generation (RAG) frameworks enhance factual coverage by fetching relevant documents, but they often suffer from two key shortcomings: distracting noise in the retrieved context and lack of logical passage ordering. To address these issues, we introduce a two-stage post-retrieval refinement pipeline. First, DenoiseLM filters out irrelevant or misleading passages, reducing hallucinations, and focusing the model’s attention on useful evidence. Second, OrderLM restructures the remaining passages into a coherent reasoning chain that mirrors the natural inferential steps.
    Empirical evaluations on the MuSiQue benchmark show that DenoiseLM alone yields an average Answer F1 improvement of +6.4 points over raw retrieval, OrderLM alone contributes only +0.1 point, and the full DenoiseLM + OrderLM cascade achieves a +6.9 point gain. Notably, few-shot in-context learning (ICL) variants of both modules match or exceed fully fine-tuned counterparts on out-of-sample tasks, offering a resource-efficient cross-domain solution. These results underscore the pivotal role of structuring retrieved content, both by relevance and by logical sequence, in bolstering the robustness and precision of multi-hop QA systems.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML27View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明