English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56990130      線上人數 : 3905
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98371


    題名: 使用3D CNN和Mamba模型的非接觸式心率量測;Remote Photoplethysmography Measuring Using 3D CNN and Mamba Modeling
    作者: 林適杰;Lin, Shih-Jie
    貢獻者: 資訊工程學系
    關鍵詞: 遠程光體積變化描記圖;非接觸式心率量測;三維卷積神經網路;Mamba模型;Remote Photoplethysmography;rPPG;Contactless Heart Rate Measurement;3D Convolutional Neural Network;Mamba
    日期: 2025-07-28
    上傳時間: 2025-10-17 12:41:50 (UTC+8)
    出版者: 國立中央大學
    摘要: 非接觸式遠程光體積變化描記圖法(rPPG)雖在遠端健康監測領域具高度潛力,然其準確性與泛化能力易受現實環境中的光影變化與頭部移動等因素干擾,為該技術普及應用之挑戰。為解決此問題,本研究提出一個結合三維卷積神經網路(3D CNN)與選擇性狀態空間模型(Mamba)的新型深度學習架構。此架構利用 3D CNN 提取臉部影像序列中的時空聯合特徵,再藉由 Mamba 模型的長序列建模能力捕捉 rPPG 訊號的時間依賴關係。實驗結果表明,本研究提出的模型在跨資料集驗證中展現出卓越的性能,其平均絕對誤差(MAE)最低可達 0.39 bpm,方均根誤差(RMSE)最低可達 0.9 bpm。此外,效能分析證實本模型在維持高準確度的同時,具備超過 96 FPS 的即時推論能力與參數量1.21M的輕量化架構。;Remote Photoplethysmography (rPPG) shows significant potential in remote health monitoring; however, its accuracy and generalization ability are susceptible to real-world factors such as varying illumination and head movements, posing a key challenge to its widespread application. To address this issue, this research proposes a novel deep learning architecture that combines a 3D Convolutional Neural Network (3D CNN) with a Selective State Space Model (Mamba). This architecture utilizes the 3D CNN to extract spatio-temporal features from facial video sequences, and then leverages Mamba′s long-sequence modeling capability to capture the temporal dependencies within the rPPG signal. Experimental results demonstrate that the proposed model exhibits superior performance in cross-dataset validation, achieving a Mean Absolute Error (MAE) as low as 0.39 bpm and a Root Mean Squared Error (RMSE) as low as 0.9 bpm. Furthermore, performance analysis confirms that the model maintains high accuracy while featuring a lightweight architecture with only 1.21M parameters and real-time inference capabilities exceeding 96 FPS.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML6檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明