中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98396
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59351207      Online Users : 758
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98396


    Title: 基於區塊鏈的聯邦學習決策樹建模平台設計:實現跨機構資料隱私保護之風險分析;Design of a Blockchain-Based Federated Learning Decision Tree Modeling Platform: Enabling Cross-Institutional Data Privacy with Risk Analysis
    Authors: 吳承翰;Wu, Cheng-Han
    Contributors: 資訊工程學系
    Keywords: 區塊鏈;智能合約;連結攻擊;決策樹;blockchain;smart contract;link attack;decision tree
    Date: 2025-07-28
    Issue Date: 2025-10-17 12:43:53 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在跨機構資料整合的場景中,不同來源的資料往往存在高度潛在的關聯性,這雖帶來了整合分析的可能性,卻也衍生出隱私洩漏的風險,特別是當攻擊者掌握部分背景資訊時,便可能透過連結攻擊(link attack),推測或高度猜測出其他機構所管理的敏感資料內容,進而造成使用者資訊的間接暴露。這樣的風險使得資料無法安心流通與交換,即便已累積大量資料,也難以真正加以整合與轉化為具體價值,成為當前資料共享發展的一大瓶頸。
    本研究提出一個結合區塊鏈與聯邦學習建模的風險分析平台來實現跨機構建構決策樹的流程,區塊鏈和智能合約作為管理、協助和監督的角色,利用不可更改的特性,可以追溯平台上的所有動作,各機構可以在不直接共享原始資料的前提下,實現資料的整合與分析。同時,本研究對於決策樹建立過程中可能出現的隱私威脅提出分析並設計了保護機制,以保障機敏資料的隱私性與安全性。
    ;In the context of cross-institutional data integration, data from different sources often exhibit a high degree of potential correlation. While this offers possibilities for integrated analysis, it also gives rise to privacy leakage risks. Especially when an attacker possesses partial background information, they may launch link attacks to infer or closely approximate sensitive data managed by other parties, thereby potentially exposing user information indirectly. Such risks hinder the secure flow and exchange of data. Even with large volumes of collected data, effective integration and conversion into valuable insights remain challenging, constituting a major bottleneck in the advancement of data sharing today.
    This study proposes a risk analysis platform that combines blockchain and federated learning modeling to enable the construction of decision trees across institutions. Blockchain and smart contracts serve the roles of management, assistance, and supervision. By leveraging their immutable characteristics, all actions on the platform can be traced. Institutions can achieve data integration and analysis without directly sharing raw data. At the same time, this study analyzes potential privacy threats that may arise during the decision tree construction process and designs protection mechanisms to safeguard the privacy and security of sensitive data.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML6View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明