English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56618130      線上人數 : 8417
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98432


    題名: N型鎂矽錫之接觸金屬開發及1V輸出模組製作;Development of Metal Contacts for N-type Mg2(SiSn) and Fabrication of 1V Output Module
    作者: 李忠勝;Lee-Chung-Sheng
    貢獻者: 電機工程學系
    關鍵詞: 熱電材料;熱電模組;N型鎂矽錫材料;熱電半導體;光學顯微鏡;X 射線繞射分析;Thermoelectric Materials;Thermoelectric module;N-type Mg2(SiSn) material;Thermoelectric semiconductors;Optical Microscope;X-ray Diffraction
    日期: 2025-07-28
    上傳時間: 2025-10-17 12:46:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 在本次實驗中,主要研究目標為降低N型熱電塊材的電阻,並探討如何在理想條件下有效地引出其輸出電壓,盡可能減少傳輸過程中的損耗。實驗中採用Mg₂(Si Sn) 作為主要材料,並設計兩種組成配比進行比較。分別叫做0.7g Mg2(Si Sn),其目的是為了改善最高耐熱溫度,增強材料結構穩定性,避免錫析出產生,另一個名為0.2g Mg₂(Si Sn),其目的是在相同的熱端溫度下,有較好的電子簽疑慮,達成更高的電壓輸出。
    0.7g Mg2(SiSn)試片塊材的電阻範圍約為0.1至10 m Ω,而0.2g Mg(Si Sn) 則為10至50 m Ω,相較之下電阻較高。然而,在熱端溫度為攝氏200度且無使用散熱風扇的條件下,0.2g Mg(Si Sn) 的輸出電壓可達約15 mV,顯著高於0.7g Mg2(Si Sn) 的約7 mV。進一步在模組製作與接合過程中也觀察到,0.2g Mg(Si Sn) 材料於物理性質上的穩定性更佳,較適合作為模組的材料選擇。
    本次實驗模組製作方面,N 型材料採用鋁片(厚度30 μm)作為焊料,鈷片(30 μm)作為橋接金屬;P 型材料則使用鋁片(30 μm)/銀箔(30 μm)/錫片(30 μm)作為焊料,橋接金屬則為銅片(200 μm)。N 型材料與P 型材料彼此橋接金屬部分接合區採用錫片(30 μm)/銀漿/錫片(30 μm)作為夾層焊料結構。
    最後測試下,在使用風扇輔助散熱的條件,一對PN元件平均輸出電壓可達約25 mV。最終完成 60對PN熱電模組,其性能量測結果,開路電壓(Voc)為1.12899 V、常溫電阻(R)為19.01 Ω、短路電流(Isc)為0.018 A,而輸出功率(P)為0.005 W。
    綜合結果顯示,0.2g Mg(Si Sn)在輸出性能與模組整合性方面均展現出較優異的表現,為本次實驗中較佳的N型材料選擇。
    ;In this experiment, the primary objectives were to reduce the bulk resistance of the thermoelectric legs and to extract output voltage with minimal loss under ideal conditions. The n-type material used was Mg₂(Si Sn), with two modified compositions, Mg₂(Si Sn), and two modified compositions were investigated.0.7g Mg2(Si Sn), referred to as such, aims to enhance the maximum thermal durability and structural stability of the material, mitigating tin segregation issues.
    The bulk resistance of 0.7g Mg2(Si Sn) generally ranged from 0.1 to 10 m Ω, while the 12at% Mg(Si Sn) showed higher resistance, typically between 10 and 50 m Ω. However, at a hot-side temperature of 200°C without forced air cooling, 0.2g Mg(Si Sn) exhibited a higher output voltage (~15 mV) compared to 0.7g Mg2(Si Sn) (~7 mV). Furthermore, during module fabrication, 0.2g Mg(Si Sn) showed better physical stability for module fabrication., which demonstrated better compatibility for assembly.
    In the module construction,N-type legs were joined using Al foil (30 μm) as solder and Co foil (30 μm) as bridging metal;P-type legs used Al foil (30 μm)/Ag foil (30 μm)/Sn foil (30 μm) as solder and Cu foil (200 μm) as the bridging metal.
    The bonding region between the N-type and P-type materials and the bridging metal was constructed using a layered solder structure consisting of Sn foil (30 μm) / Ag paste / Sn foil (30 μm).
    In the final test, under fan-assisted cooling conditions, a single pair of PN elements achieved an average output voltage of approximately 25 mV. A thermoelectric module consisting of 60 pairs of PN elements was finally assembled. Performance measurements revealed an open-circuit voltage (Voc) of 1.12899 V, a room-temperature resistance (R) of 19.01 Ω, a short-circuit current (Isc) of 0.018 A, and an output power (P) of 0.005 W.
    These results indicate that 0.2g Mg(Si Sn) is a more suitable n-type material for high-integration thermoelectric module applications due to its superior voltage output and compatibility in module assembly.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML10檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明