LEO 衛星網路有著極具展望的發展趨勢。然而,由於衛星的快速移動性及其獨特的能源限制,衛星網路與地面網路有顯著的差異。 尤其衛星會面臨因電池耗盡而終止任務的風險,因此設計高能源效率的路由策略至關重要。 衛星會持續在光照期和陰影期之間轉換。在陰影期間,當衛星無法藉由太陽光照充電時,便只能依賴電池供電,導致更深的放電,對電池壽命造成負面影響。 為了解決這個問題,我們提出了一種衛星網路路由演算法,該演算法整合了擁塞控制與放電深度 (DoD) 最小化。 當擁塞發生時,我們的方法會主動重新導向流量以減輕負載。 此外,當衛星的電池電量過低時,我們的演算法會進一步調整路由方向,以防止嚴重的能源耗損。 此外,我們透過分析單顆衛星和多顆衛星地面站存取模型,考量實際部署情境。 模擬結果證明我們的方法不僅能維持低 DoD,還能達到低延遲。 這可確保在不影響使用者體驗或服務效能的情況下,延長衛星的使用壽命。;LEO satellite networks represent a highly promising development trend. However, due to the high mobility of satellites and their unique energy con- straints, their characteristics differ significantly from terrestrial networks. In particular, satellites face the risk of mission termination due to battery deple- tion, making the design of energy-efficient routing strategies essential. Satel- lites continuously transition between sunlight and eclipse periods. During eclipse periods, when sunlight is unavailable, satellites rely solely on battery power, resulting in deeper discharge that negatively impacts battery lifes- pan. To address this, we propose a satellite network routing algorithm that integrates congestion control with Depth of Discharge (DoD) minimization. When potential congestion occurs, our method proactively redirects traffic to relieve the load. Moreover, when a satellite’s battery level drops too low, our algorithm further adjusts routing directions to prevent critical energy deple- tion. Additionally, we consider practical deployment scenarios by analyzing both single-satellite and multi-satellite ground station access models. Simu- lation results demonstrate that our approach not only maintains a low DoD but also achieves low latency. This ensures that satellite lifespan is extended without compromising user experience or service performance.