English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56618132      線上人數 : 8419
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98489


    題名: 具疑問詞約束損失之醫療問句摘要模型;A Medical Question Summarization Model with Interrogative-Word Constrained Loss
    作者: 陳昭沂;Chen, Chao-Yi
    貢獻者: 電機工程學系
    關鍵詞: 醫療問題摘要;對比學習;損失函數;醫療焦點;Medical Question Summarization;Contrastive Learning;Multiple taskspecific loss functions;Medical Focus
    日期: 2025-08-11
    上傳時間: 2025-10-17 12:50:29 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著醫療健康資訊需求日益攀升,自動化處理並理解患者提問成為智慧醫療發展中
    的一項關鍵挑戰。英文醫療問題摘要任務旨在將語句冗長且結構鬆散的原始問題,轉化
    為語意明確且重點突出的簡潔問句,進而提升醫療問答系統於資訊檢索與應答階段之效
    能。然而,現有生成式摘要模型常面臨資訊遺漏與幻覺 (hallucination) 等問題,對臨床
    應用的可靠性與安全性構成潛在風險。
    本研究提出一套以 FaMeSum 模型為基礎所延伸之改良型摘要架構,融合多種任務
    導向的損失函數設計,包括對比學習損失 (Contrastive Loss) 、醫療知識損失 (Medical
    Knowledge Loss) 與疑問詞約束損失(Interrogative-Word Constrained Loss) ,並設計一套
    自動化的醫療焦點擷取與樣本構建策略,從原始問題中擷取語義關鍵詞,以強化模型對
    醫療核心資訊之學習能力。
    本研究採用 MeQSum 資料集進行實驗評估,比較多種主流醫療問題摘要模型之
    效能。實驗結果顯示,本研究所提出之模型在重點涵蓋度指標 ROUGE 上分別達到
    ROUGE-1 為 54.84、ROUGE-2 為 37.81、ROUGE-L 為 52.65,在語義一致性指標
    BERTScore 上則達到 89.21。相較於 FaMeSum 模型,本模型在 ROUGE-1 提升
    3.69、ROUGE-2 提升 2.98、ROUGE-L 提升 3.73,BERTScore 則提升 1.24,整體表
    現顯著優於現有方法。本研究證實,透過結合醫療語義理解與對比學習機制之生成式
    摘要模型,能顯著提升醫療問題摘要任務之準確性與忠實性。;With the growing demand for medical information, automating the processing and
    understanding of patient inquiries has become a pivotal challenge in the advancement of
    intelligent healthcare systems. The task of medical question summarization aims to transform
    verbose and loosely structured patient questions into concise, semantically clear queries,
    thereby enhancing the efficiency of medical question-answering systems in both information
    retrieval and response generation phases. However, existing generative summarization models
    often grapple with issues like information omission and hallucination, posing potential risks to
    clinical reliability and safety.
    This study introduces an enhanced summarization framework based on the FaMeSum
    model, integrating multiple task-oriented loss functions, including Contrastive Loss, Medical
    Knowledge Loss, and Interrogative-Word Constrained Loss. Additionally, we devise an
    automated strategy for extracting medical focal points and constructing samples by identifying
    semantic keywords from original questions, aiming to bolster the model′s capability in learning
    core medical information.
    We conduct experimental evaluations using the MeQSum dataset, comparing the
    performance of various state-of-the-art medical question summarization models. The results
    demonstrate that our proposed model achieves ROUGE-1 of 54.84, ROUGE-2 of 37.81,
    ROUGE-L of 52.65, and a BERTScore of 89.21. Compared to the original FaMeSum model,
    ii
    our approach shows improvements of +3.69 in ROUGE-1, +2.98 in ROUGE-2, +3.73 in
    ROUGE-L, and +1.24 in BERTScore. These findings confirm that integrating medical semantic
    understanding with contrastive learning mechanisms in generative summarization models can
    significantly enhance the accuracy and faithfulness of medical question summarization tasks.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML4檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明