中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98491
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59237515      Online Users : 928
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98491


    Title: Investigation of Equatorial Plasma Bubble Observations in the Taiwan-Philippine Region Using GNSS Receiving Network and Hualien VIPIR Station (2023-2024)
    Authors: 胡凱哲;Juadines, Kyle Ezekiel
    Contributors: 遙測科技碩士學位學程
    Keywords: 赤道展幅現象;赤道電漿泡;總電子含量變化率指標;VS4;VIPIR;Equatorial Spread-F (ESF);Equatorial Plasma Bubbles (EPBs);Rate of Total Electron Content Index;VS4;VIPIR
    Date: 2025-08-26
    Issue Date: 2025-10-17 12:50:33 (UTC+8)
    Publisher: 國立中央大學
    Abstract: This study investigated the occurrence frequency, perturbation intensity, and spatial morphology of equatorial plasma bubbles (EPBs) in Taiwan from 2023 to 2024, during which solar activity increased significantly. Through the unified Rate of Total Electron Content Index (ROTI) threshold value (>0.9 TECU/min), this study found a significant increase in EPB events, from 74 in 2023 to 128 in 2024, which is closely related to the increase in solar flux and the increase in sunspot count. The intensity of flickering is measured by the VS4 index and peaks during the spring and autumn equinoxes, but significant activity is also observed during the summer solstices such as May and August, indicating that EPB formation can be extended to atypical seasons during the solar maximum. Latitude analysis shows that higher VS4 values correspond to a larger EPB extension range, up to about 28 degrees of latitude. The auxiliary data provided by the VIPIR ionospheric detector further validated the changes in the underlying ionosphere during the EPB event, with significant increases in h′F2 and foF2 values, consistent with the VS4 high-value event. The findings highlight the impact of solar driving forces on EPB behavior and highlight the importance of integrated diagnostic techniques in low-latitude GNSS vulnerability assessment.;This study explores the occurrence, intensity, and spatial morphology of Equatorial Plasma Bubbles (EPBs) over Taiwan during 2023–2024, a period marked by elevated solar activity. Using a consistent ROTI threshold (>0.9 TECU/min), EPB detection revealed a substantial increase in events—from 74 in 2023 to 128 in 2024—closely tied to rising solar flux and sunspot numbers.
    Scintillation intensity, measured via the VS4 index, peaked during equinoctial months, but solstitial periods like May and August also showed notable activity, indicating solar maxima broaden EPB development beyond typical seasonal norms. Latitudinal analysis showed stronger VS4 values corresponded to greater EPB spread, up to ~28°.
    Supporting data from VIPIR ionosonde observations confirmed bottom-side ionospheric responses, with elevated h’F2 and foF2 values matching intense EPB episodes. These findings highlight the influence of solar forcing on EPB behavior and underscore the importance of integrated diagnostics for GNSS vulnerability assessment in equatorial regions.
    Appears in Collections:[Master of Science Program in Remote Sensing Science and Technology ] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML15View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明