中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98496
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59471587      線上人數 : 954
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98496


    題名: 用於高度不平衡乳癌分類的流形平衡混合方法;Balanced-MixUp on Manifold for Highly Imbalanced Breast Cancer Classification
    作者: 羅茂德;Fadlurrohman, Muhammad
    貢獻者: 資訊工程學系
    關鍵詞: 乳腺癌分類乳癌分類;高度不平衡;C-view 乳房攝影;Balanced-MixUp;Manifold Mixup;Breast Cancer Classification;Highly Imbalanced;C-view Mammogram;Balanced-MixUp;Manifold Mixup
    日期: 2025-08-04
    上傳時間: 2025-10-17 12:50:46 (UTC+8)
    出版者: 國立中央大學
    摘要: 乳腺癌分類在乳房攝影資料集中面臨重大的挑戰,這是因為資料高度不平衡,良性病例遠遠多於惡性病例。這種不平衡可能導致深度學習模型偏向多數類別,從而降低其對癌症病例的檢測效能. 為了解決此問題,我們提出一種新穎的多層級資料增強框架,稱為 Manifold 上的 Balanced-MixUp,此方法結合了輸入層級的基於類別與基於實
    例的 MixUp,並透過 Manifold Mixup 進行潛在特徵空間的插值. Balanced-MixUp 採用 Beta(α, 1) 分布控制的 α 超參數來生成合成樣本,以提升少數類別的表徵能力;而 Manifold Mixup 則在隱藏層中進行特徵內插,促進決策邊界更為平滑. 我們在 EMBED C-view 乳房 X 光影像資料集上,以四種 CNN 網路架構進行評估 MobileNet-V2、VGG-19、DenseNet-121 以及 ResNeXt-50. 實驗採用分層五折交叉驗證,評估指標包含Matthews 相關係數(MCC)、平衡準確率(B-ACC)與 Macro-F1. 實驗結果顯示,我們所提出的方法能顯著提升對於代表性不足癌症病例的分類效能.;Breast cancer classification faces significant challenges due to the highly imbalanced nature of mammography datasets, where benign cases vastly outnumber malignant cases. This imbalance can lead deep learning models to become biased toward the majority class, limiting their effectiveness in detecting cancerous cases. To address this, we propose a novel multi-level augmentation framework called Balanced-MixUp on Manifold, which combines class-based and instance-based MixUp at the input level with latent space interpolation via Manifold Mixup. Balanced-MixUp generates synthetic samples with controlled α-hyperparameter using a Beta (α, 1) distribution to improve minority class representation, while Manifold Mixup interpolates features within hidden layers to encourage smoother decision boundaries. We evaluate our method on the EMBED C-view mammogram dataset using four architectures CNN: MobileNet-V2, VGG-19, DenseNet-121, and ResNeXt-50. Stratified 5-fold cross-validation is performed, and evaluation metrics include Matthews Correlation Coefficient (MCC), Balanced Accuracy (B-ACC), and Macro-F1. Results demonstrate that our propose method significantly improves classification performance on underrepresented cancer cases.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML22檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明