English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56618145      線上人數 : 8432
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98497


    題名: 下垂控制微電網結合智慧型預同步以實現併網;Droop Controlled Microgrid Using Intelligent Pre-Synchronization for Grid Connection
    作者: 王辰意;Wang, Chen-Yi
    貢獻者: 電機工程學系
    關鍵詞: 預同步;微電網;二元機率勒壤得模糊類神經網路;無縫切換;併網
    日期: 2025-08-13
    上傳時間: 2025-10-17 12:51:02 (UTC+8)
    出版者: 國立中央大學
    摘要: 本文提出一種新穎的預同步方法應用於下垂控制微電網,以實現併網操作。當微電網處於孤島模式且市電恢復正常時,由於微電網與市電在相位、頻率與電壓上的非同步性,使得孤島與併網模式間的無縫切換成為一項重大挑戰。若微電網與市電之間未完成同步,即進行併聯操作,將可能產生湧浪電流與電壓波動,導致設備不穩定甚至損壞。
    因此,為解決此問題,本文提出一種新的預同步方法,實現相位同步、頻率恢復與電壓恢復,進而達成微電網與市電的安全併聯。此外,為加快同步過程,本文首度引入兩組二元機率勒壤得模糊類神經網路(Binarized Probabilistic Legendre Fuzzy Neural Network, BPLFNN)控制器,分別取代傳統用於頻率與電壓恢復之比例積分(PI)控制器與模糊類神經網路(FNN)控制器。
    本文亦推導所提出 BPLFNN 之網路架構與基於誤差反向傳播(Backpropagation, BP)之線上學習演算法。最後,透過實驗驗證本研究所提出之 BPLFNN 型預同步控制方法,能有效實現下垂控制微電網之安全併網,並具備良好的穩定性與即時響應性能。
    ;In this study, a novel pre-synchronization method is proposed for a droop controlled microgrid to implement grid connection. When the microgrid operates in islanded mode and intends to reconnect to a normally operated power grid, seamless transition between islanded mode and grid-connected mode is a significant challenge due to the non-synchronous phase, frequency and voltage between the microgrid and power grid. If the phase, frequency and voltage of the microgrid are not synchronized with the power grid, inrush currents and voltage fluctuations may lead to system instability and damage equipment during grid connection. Hence, to address this issue, a novel pre-synchronization method to achieve the phase synchronization, frequency and voltage restoration is proposed for the droop controlled microgrid to implement grid connection. Moreover, to rapidly achieve the pr-synchronization, two binarized probabilistic Legendre fuzzy neural network (BPLFNN) controllers are firstly proposed to replace the traditional proportional-integral (PI) and fuzzy neural network (FNN) controllers for frequency and voltage restoration. The network structure and online learning algorithm based on backpropagation (BP) of the proposed BPLFNN are derived. Finally, the effectiveness of the proposed BPLFNN-based pre-synchronization method to achieve grid connection of the droop controlled microgrid is verified by experimentation.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明