本研究提出一種新穎的適應性計算定子磁鏈控制策略,並結合以磁鏈為基礎的每安培最大轉矩控制與增強暫態控制,以構建提升性能之同步磁阻馬達驅動系統。首先,介紹了傳統的每安培最大轉矩控制,其中d軸與q軸電流指令相等;然而,由於同步磁阻馬達電感隨負載劇烈變化,傳統的每安培最大轉矩控制在負載突變時的動態響應較差。為此,提出了基於定子磁鏈控制的雙模式控制系統,其中以磁鏈為基礎的每安培最大轉矩控制用於產生穩態的負載角命令,增強暫態控制用於提升暫態扭矩響應。定子磁鏈命令由定子適應性計算磁鏈控制獲得,負載角指令則由所提以磁鏈為基礎的每安培最大轉矩控制與增強暫態控制產生。最後,採用TI TMS320F28075 32位浮點DSP平台實現所提系統,並通過實驗結果驗證了其在速度調節性能上的優越性。;This study proposes a novel adaptive computed flux control (ACFC) with a flux-based maximum torque per ampere control (FMTPAC) and an enhanced transient control (ETC) to develop a high-performance synchronous reluctance motor (SynRM) drive system. First, a conventional maximum torque per ampere control (CMTPAC) is presented, where the d-axis and q-axis current commands are equal. However, the CMTPAC shows poor dynamic response under varied load torque conditions due to the severe inductance variation of SynRM. Therefore, an ACFC-based two-mode control (ACFCTC) system including the FMTPAC and ETC is proposed to improve the motor speed response of the SynRM drive system. The stator flux commands are computed by the ACFC, and the load angle commands are generated by the proposed FMTPAC and ETC. Finally, a 32-bit floating-point digital signal processor TMS320F28075 is adopted to implement the proposed ACFCTC system and verify its effectiveness with some experimental results.