中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98509
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 61351036      Online Users : 626
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98509


    Title: High-Frequency Forecasting of Taiwan Stock Market Using Informer Model with Federated Learning
    Authors: 周裕倫;Chou, Yu-Lun
    Contributors: 數學系
    Keywords: 深度學習;Transformer模型;聯邦式學習;股價預測;稀疏注意力機制;Informer模型;Deep Learning;Transformer Model;Federated Learning;Stock Price Prediction;Sparsity Attention;Informer Model
    Date: 2025-06-26
    Issue Date: 2025-10-17 12:51:56 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究旨在探討深度學習模型應用於高頻股價預測任務之可行性,並評估 Transformer 與其衍生架構 Informer 在台灣股市資料下的表現差異。考量真實金融環境中資料分散且不均,本研究進一步設計模擬聯邦式學習架構,透過多檔股票模型參數的加權聚合與微調,以提升模型在資料稀疏條件下的穩定性與泛化能力。此外,針對 Informer 模型中的 ProbSparse 注意力機制,本研究亦探討稀疏性參數(sparsity factor)之調整對預測精度的影響。
    實驗資料涵蓋台灣 11 檔大型上市公司之 15 分鐘 K 線資料,並搭配多項技術指標進行特徵建構。實驗結果顯示,在原始設定下 Informer 與 Transformer 各有優劣,惟引入聯邦式學習策略後,Informer 在多數股票上表現穩定提升。進一步提高注意力稀疏性亦有助於捕捉高頻波動訊號,增強模型預測能力。整體而言,本研究提出一套具彈性且可重現的高頻股價預測流程,未來可延伸應用於交易策略設計與跨市場金融預測任務。;This study explores the application of deep learning models for high-frequency stock price forecasting, with a focus on evaluating the performance of Transformer and its derivative, Informer, in the Taiwan stock market. To address challenges related to data sparsity and heterogeneity in real-world financial environments, a simulated federated learning framework is introduced. This framework aggregates and fine-tunes model parameters trained on multiple stocks, thereby enhancing prediction stability and generalization under limited data conditions. In addition, the study examines the effect of adjusting the sparsity factor in the Informer’s ProbSparse attention mechanism on predictive accuracy.
    The experimental dataset consists of 15-minute K-line data from 11 major Taiwanese stocks, combined with a range of technical indicators for feature construction. Results show that while Transformer and Informer exhibit mixed performance under default settings, the federated aggregation strategy consistently improves the accuracy and robustness of Informer. Moreover, increasing the sparsity factor enhances the model’s ability to capture short-term fluctuations, particularly in high-frequency trading environments. Overall, this study proposes a flexible and reproducible forecasting pipeline, offering potential for extension to trading strategy development and cross-market financial applications.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML100View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明