中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98519
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59576520      線上人數 : 970
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98519


    題名: 基於虛擬實境的 ADHD 數位療法系統綜合評估:一項循證的多模態研究;Comprehensive Evaluation of a VR-Based Digital Therapeutics System for ADHD: An Evidence-Based Multimodal Study
    作者: 游雅晴;Yu, Ya-Ching
    貢獻者: 資訊工程學系
    關鍵詞: 注意力不足過動症(ADHD);虛擬實境;多模態分析;數位療法;Attention Deficit/Hyperactivity Disorder;Virtual Reality;Multimodal Analysis;Digital Therapeutics
    日期: 2025-08-05
    上傳時間: 2025-10-17 12:52:59 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究探討了基於虛擬實境(VR)的認知訓練系統在改善注意力不足過動症(ADHD)兒童的注意力和工作記憶方面的有效性。與傳統的治療方法相比,如藥物治療和認知行為治療(CBT),VR 系統提供了一個非侵入性且沉浸式的訓練環境,能夠更準確地捕捉認知和行為變化。該系統整合了多模態生理感測器,包括腦電圖(EEG)、眼動追蹤、頭部/身體運動和面部表情分析,實時提供與任務相關和自發性行為的數據。結果顯示,在任務表現和量表分數上均有顯著改善,並且多項生理信號顯示出與訓練相關的變化,表明注意力和抑制控制得到了更廣泛的改善。此外,使用多模態特徵的機器學習模型達到了93%的準確率,這表明這些生理信號可能作為治療反應的潛在生物標記。這些發現突顯了 VR 輔助、數據驅動的介入方法在 ADHD 治療中的巨大潛力,並為未來更具個性化和客觀性的評估框架奠定基礎。;This study investigates the effectiveness of a virtual reality (VR)-based cognitive training system in improving attention and working memory in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Compared to traditional treatment methods, such as behavioral assessments and medication, the VR system provides a non-invasive and immersive training environment that more accurately captures cognitive and behavioral changes. The system integrates multimodal physiological sensors, including EEG, eye tracking, head/body movement, and facial expression analysis, to provide real-time data on both task-related and spontaneous behaviors. Results showed significant improvements in both task performance and scale scores, with several physiological signals revealing training-related changes, indicating broader improvements in attention and inhibitory control. Furthermore, machine learning models using multimodal features achieved an accuracy rate of 93%, suggesting that these physiological signals may serve as potential biomarkers for treatment response. These findings highlight the promising potential of VR-assisted, data-driven interventions for ADHD rehabilitation and pave the way for more personalized and objective evaluation frameworks in the future.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML7檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明