中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98521
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 61343956      在线人数 : 664
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98521


    题名: 透過高效秩1主成分追蹤提取視訊前景;Video Foreground Extraction via Efficient Rank-1 Principal Component Pursuit
    作者: 魏詩庭;Wei, Shih-Ting
    贡献者: 數學系
    关键词: 主成分追蹤;秩1主成分追蹤;秩1矩陣分解;低秩與稀疏矩陣分解;提取視訊前景;加速交替投影;principal component pursuit;rank-1 principal component pursuit;low rank and sparse decomposition;rank-1 matrix decomposition;video foreground extraction;Accelerated alternating projections
    日期: 2025-07-13
    上传时间: 2025-10-17 12:53:15 (UTC+8)
    出版者: 國立中央大學
    摘要: 提取視訊前景是電腦視覺中一項任務,其目的是從包含動態前景物體與靜態背景的影像序列中,準確地提取出前景資訊。本文提出一種改良Candès 等人所發展的主成分追蹤方法,建構了一個高效秩1主成分追蹤模型,應用於視訊中的前景提取。該方法假設所有影格共享相同的背景,並將整段視訊表示為一個資料矩陣,將其分解為稀疏矩陣與秩1矩陣之和。 我們進一步基於增廣拉格朗日乘子法設計出一種高效演算法,其透過閉合形式解的更新實現快速收斂,並顯著降低計算成本。為了評估方法效能,我們將所提出的模型與現有的非凸主成分追蹤演算法–加速交替投影法–進行比較。數值實驗結果顯示,透過高效秩1主成分追蹤模型在某些情境下於精確度與執行速度具有相對優勢,結果驗證了所提方法在提取視訊前景上的有效性與穩健性,顯示其作為提取前景建模工具的實用潛力。;Video foreground extraction is a fundamental task in computer vision, aiming to accurately extract the foreground from a sequence of frames containing dynamic foreground objects and a static background. This thesis proposes an improved principal component pursuit (PCP) model developed by Candès et al., constructing an efficient rank-1 PCP model applied to foreground extraction modeling in video. The method assumes that all frames shares a common background, and formulates the video sequence as a data matrix to be decomposed into sparse and rank-1 components. We further develop an efficient algorithm based on the Augmented Lagrange Multiplier (ALM) method, which enables closed-form updates for fast convergence and significantly reduces computational cost. To evaluate performance, the proposed model is compared with the existing nonconvex PCP solver, Accelerated Alternating Projection (AccAltProj). Numerical experiments demonstrate that the rank-1 model exhibits relative advantages in both accuracy and runtime under certain scenarios. The results confirm the effectiveness and robustness of the proposed method in video foreground extraction, highlighting its practical potential as a foreground extraction modeling tool.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML57检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明